論文の概要: Exploring the flavor structure of quarks and leptons with reinforcement
learning
- arxiv url: http://arxiv.org/abs/2304.14176v1
- Date: Thu, 27 Apr 2023 13:25:34 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-28 13:19:07.264090
- Title: Exploring the flavor structure of quarks and leptons with reinforcement
learning
- Title(参考訳): 強化学習によるクォークとレプトンの風味構造探索
- Authors: Satsuki Nishimura, Coh Miyao, Hajime Otsuka
- Abstract要約: 我々はクォークとレプトンのニューラルネットワークを訓練し、実験によって測定された質量とクォークとレプトンの混合角度と整合する。
ニュートリノレス二重ベータ崩壊に対する有効質量の特定の値と大きなレプトニックCP違反は、エージェントの自律的挙動によって予測される。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a method to explore the flavor structure of quarks and leptons
with reinforcement learning. As a concrete model, we utilize a basic
policy-based algorithm for models with $U(1)$ flavor symmetry. By training
neural networks on the $U(1)$ charges of quarks and leptons, the agent finds 21
models to be consistent with experimentally measured masses and mixing angles
of quarks and leptons. In particular, an intrinsic value of normal ordering
tends to be larger than that of inverted ordering, and the normal ordering is
well fitted with the current experimental data in contrast to the inverted
ordering. A specific value of effective mass for the neutrinoless double beta
decay and a sizable leptonic CP violation induced by an angular component of
flavon field are predicted by autonomous behavior of the agent.
- Abstract(参考訳): クォークとレプトンの風味構造を強化学習を用いて探索する手法を提案する。
具体的なモデルとして、$U(1)$フレーバー対称性を持つモデルに基本ポリシーに基づくアルゴリズムを用いる。
クォークとレプトンの$u(1)$電荷でニューラルネットワークを訓練することで、エージェントは21のモデルが実験的に測定された質量とクォークとレプトンの混合角と一致することを発見した。
特に、正規順序の固有値は、逆順序よりも大きくなりがちであり、正規順序は、逆順序とは対照的に、現在の実験データによく適合する。
フラボンフィールドの角成分によって誘導されるニュートリノレス二重ベータ崩壊に対する有効質量の特定の値と大きなレプトニックCP違反は、エージェントの自律的挙動によって予測される。
関連論文リスト
- Gradient-Based Feature Learning under Structured Data [57.76552698981579]
異方性設定では、一般的に使用される球面勾配力学は真の方向を回復できないことがある。
バッチ正規化を連想させる適切な重み正規化は、この問題を軽減することができることを示す。
特に、スパイクモデルの下では、勾配に基づくトレーニングのサンプルの複雑さは情報指数とは独立にできる。
論文 参考訳(メタデータ) (2023-09-07T16:55:50Z) - Realtime dynamics of hyperon spin correlations from string fragmentation
in a deformed four-flavor Schwinger model [0.0]
Lambda$-hyperonsの自己偏極弱崩壊は、QCD弦における絡み合いの役割についての洞察を与える。
モデルハミルトニアンのリッチ構造に敏感な異なる文字列構成に対するこれらの相関関係の進化について検討する。
論文 参考訳(メタデータ) (2023-08-25T18:00:01Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
実験データから未知のパラメータを復元するために、モデルハミルトンのシミュレーションデータを模倣するために訓練されたニューラルネットワークと自動微分を組み合わせた人工知能フレームワークを開発する。
そこで本研究では, 実時間から多次元散乱データに適用可能な微分可能なモデルを1回だけ構築し, 訓練する能力について述べる。
論文 参考訳(メタデータ) (2023-04-08T07:55:36Z) - Entanglement and correlations in fast collective neutrino flavor
oscillations [68.8204255655161]
集合ニュートリノ振動は、天体物理学的な設定においてレプトンのフレーバーを輸送する上で重要な役割を担っている。
高速振動を呈する単純多角ジオメトリーにおける平衡外フレーバーのフルダイナミクスについて検討した。
我々はこれらの高速集団モードが同じ動的相転移によって生成されることを示す。
論文 参考訳(メタデータ) (2022-03-05T17:00:06Z) - Multi-scale Feature Learning Dynamics: Insights for Double Descent [71.91871020059857]
一般化誤差の「二重降下」現象について検討する。
二重降下は、異なるスケールで学習される異なる特徴に起因する可能性がある。
論文 参考訳(メタデータ) (2021-12-06T18:17:08Z) - Autoencoder-driven Spiral Representation Learning for Gravitational Wave
Surrogate Modelling [47.081318079190595]
オートエンコーダを用いた経験的係数における基礎構造の存在について検討する。
ニューラルネットワークの第一層として使用される学習可能なパラメータを持つスパイラルモジュールを設計し,入力空間を係数にマッピングする方法を学習する。
スパイラルモジュールは複数のニューラルネットワークアーキテクチャ上で評価され、ベースラインモデルよりも一貫して速度-精度のトレードオフを実現している。
論文 参考訳(メタデータ) (2021-07-09T09:03:08Z) - Towards an Understanding of Benign Overfitting in Neural Networks [104.2956323934544]
現代の機械学習モデルは、しばしば膨大な数のパラメータを使用し、通常、トレーニング損失がゼロになるように最適化されている。
ニューラルネットワークの2層構成において、これらの良質な過適合現象がどのように起こるかを検討する。
本稿では,2層型ReLUネットワーク補間器を極小最適学習率で実現可能であることを示す。
論文 参考訳(メタデータ) (2021-06-06T19:08:53Z) - Supervised deep learning prediction of the formation enthalpy of the
full set of configurations in complex phases: the $\sigma-$phase as an
example [1.8369974607582582]
固体化学におけるいくつかの特性の予測に機械学習をどのように利用できるかを示す。
特に、与えられた複雑な結晶相の形成熱を予測するのに使用できる。
論文 参考訳(メタデータ) (2020-11-21T22:07:15Z) - Structure Learning in Inverse Ising Problems Using $\ell_2$-Regularized
Linear Estimator [8.89493507314525]
モデルミスマッチにも拘わらず,正則化を伴わずに線形回帰を用いてネットワーク構造を完璧に識別できることを示す。
本稿では,2段階推定器を提案する。第1段階では隆起回帰を用い,比較的小さな閾値で推算を行う。
適切な正規化係数としきい値を持つ推定器は、0M/N1$でもネットワーク構造の完全同定を実現する。
論文 参考訳(メタデータ) (2020-08-19T09:11:33Z) - Sample Complexity Bounds for 1-bit Compressive Sensing and Binary Stable
Embeddings with Generative Priors [52.06292503723978]
生成モデルを用いた圧縮センシングの進歩により, 生成モデルを用いた1ビット圧縮センシングの問題点を考察した。
まずノイズのない1ビット測定を考察し, ガウス測度に基づく近似回復のためのサンプル複雑性境界を提供する。
また,リプシッツ連続生成モデルを用いた1ビット圧縮センシングにも有効であることを示すため,評価誤差と雑音に対する再構成の堅牢性を示すBinary $epsilon$-Stable Embedding特性を実証した。
論文 参考訳(メタデータ) (2020-02-05T09:44:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。