論文の概要: NAP at SemEval-2023 Task 3: Is Less Really More? (Back-)Translation as
Data Augmentation Strategies for Detecting Persuasion Techniques
- arxiv url: http://arxiv.org/abs/2304.14179v1
- Date: Thu, 27 Apr 2023 13:33:08 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-28 13:20:22.187682
- Title: NAP at SemEval-2023 Task 3: Is Less Really More? (Back-)Translation as
Data Augmentation Strategies for Detecting Persuasion Techniques
- Title(参考訳): NAP at SemEval-2023 Task 3: より少ないか?
(背)説得技術検出のためのデータ拡張戦略としての翻訳
- Authors: Neele Falk, Annerose Eichel, Prisca Piccirilli
- Abstract要約: マルチランガルなセットアップでニュースを検出する説得テクニックは、簡単ではなく、トレーニングデータが少ないなど、課題が伴う。
本システムでは,多言語変換器モデルを用いたデータ拡張戦略として(バック-バック)翻訳をうまく活用し,説得的手法の検出に役立てる。
- 参考スコア(独自算出の注目度): 1.8262547855491458
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Persuasion techniques detection in news in a multi-lingual setup is
non-trivial and comes with challenges, including little training data. Our
system successfully leverages (back-)translation as data augmentation
strategies with multi-lingual transformer models for the task of detecting
persuasion techniques. The automatic and human evaluation of our augmented data
allows us to explore whether (back-)translation aid or hinder performance. Our
in-depth analyses indicate that both data augmentation strategies boost
performance; however, balancing human-produced and machine-generated data seems
to be crucial.
- Abstract(参考訳): マルチランガルなセットアップでニュースを検出する説得テクニックは簡単ではなく、ほとんどトレーニングデータを含む課題が伴う。
本システムでは,多言語変換器モデルを用いたデータ拡張戦略として(バック-バック)翻訳をうまく活用し,説得手法を検出する。
拡張データの自動的および人的評価により、(バック)翻訳支援がパフォーマンスを阻害するかどうかを調査できる。
我々の詳細な分析によると、データ拡張戦略はどちらもパフォーマンスを向上するが、人為的なデータと機械によるデータのバランスは重要と思われる。
関連論文リスト
- Investigating the Impact of Semi-Supervised Methods with Data Augmentation on Offensive Language Detection in Romanian Language [2.2823100315094624]
攻撃的な言語検出は、今日のデジタルランドスケープにおいて重要なタスクです。
堅牢な攻撃的言語検出モデルを構築するには、大量のラベル付きデータが必要である。
半教師付き学習はラベル付きおよびラベルなしのデータを活用することで実現可能なソリューションを提供する。
論文 参考訳(メタデータ) (2024-07-29T15:02:51Z) - Few-shot learning for automated content analysis: Efficient coding of
arguments and claims in the debate on arms deliveries to Ukraine [0.9576975587953563]
トランスフォーマーニューラルネットワークに基づく事前学習言語モデル(PLM)は、通信科学における自動コンテンツ分析を改善する大きな機会を提供する。
これまでの3つの特徴は、NLP研究における英語モデルの優位性、必要な計算資源、微調整 PLM の訓練データ作成に必要な労力など、適用分野における手法の普及を妨げている。
我々は、われわれのアプローチを、コミュニケーション科学の現実的なユースケースで試し、主張や議論を自動的に検出し、ドイツによるウクライナへの武器の配達に関する議論におけるスタンスと合わせて検証する。
論文 参考訳(メタデータ) (2023-12-28T11:39:08Z) - Textual Augmentation Techniques Applied to Low Resource Machine
Translation: Case of Swahili [1.9686054517684888]
機械翻訳において、世界中の言語ペアのほとんどは、ほとんど並列データがないため、低リソースと見なされている。
テキスト分類タスクで広く使われている3つの単純なデータ拡張手法を研究・適用する。
多様なデータセットでより広範な実験を行う場合には、これらの手法をニューラルネットワーク翻訳に使用する可能性がある。
論文 参考訳(メタデータ) (2023-06-12T20:43:24Z) - WADER at SemEval-2023 Task 9: A Weak-labelling framework for Data
augmentation in tExt Regression Tasks [4.102007186133394]
本稿では、WADERと呼ばれるテキスト回帰タスクにおいて、データ拡張のための新しい弱ラベル方式を提案する。
我々は、WADERを用いて、事前訓練された多言語言語モデルの性能をベンチマークし、データのバイアスを軽減するためにサンプリング技術を用いて分析する。
論文 参考訳(メタデータ) (2023-03-05T19:45:42Z) - AugGPT: Leveraging ChatGPT for Text Data Augmentation [59.76140039943385]
本稿では,ChatGPT(AugGPT)に基づくテキストデータ拡張手法を提案する。
AugGPTはトレーニングサンプルの各文を、概念的には似ているが意味的に異なる複数のサンプルに言い換える。
数ショットの学習テキスト分類タスクの実験結果は、提案したAugGPTアプローチの優れた性能を示している。
論文 参考訳(メタデータ) (2023-02-25T06:58:16Z) - Exploring Dimensionality Reduction Techniques in Multilingual
Transformers [64.78260098263489]
本稿では,多言語シームス変圧器の性能に及ぼす次元還元法の影響を包括的に考察する。
これは、それぞれ91.58% pm 2.59%$と54.65% pm 32.20%$の次元を平均で減少させることが可能であることを示している。
論文 参考訳(メタデータ) (2022-04-18T17:20:55Z) - Improving Neural Machine Translation by Denoising Training [95.96569884410137]
本稿では,ニューラルネットワーク翻訳のためのトレーニングDoTの簡易かつ効果的な事前学習戦略を提案する。
モデルパラメータを、初期段階のソースおよびターゲットサイドのDenoisingタスクで更新し、正常にモデルをチューニングします。
実験によると、DoTは12のバイリンガルと16の多言語方向にわたるニューラルマシン翻訳性能を一貫して改善している。
論文 参考訳(メタデータ) (2022-01-19T00:11:38Z) - Improving Neural Machine Translation by Bidirectional Training [85.64797317290349]
我々は、ニューラルネットワーク翻訳のためのシンプルで効果的な事前学習戦略である双方向トレーニング(BiT)を提案する。
具体的には、初期モデルのパラメータを双方向に更新し、正常にモデルを調整する。
実験の結果,BiTは8つの言語対上の15の翻訳タスクに対して,SOTAニューラルマシン翻訳性能を著しく向上させることがわかった。
論文 参考訳(メタデータ) (2021-09-16T07:58:33Z) - On the Language Coverage Bias for Neural Machine Translation [81.81456880770762]
言語カバレッジバイアスは、ニューラルネットワーク翻訳(NMT)において重要である。
実験を慎重に設計することにより、トレーニングデータにおける言語カバレッジバイアスの包括的分析を行う。
本稿では,言語カバレッジバイアス問題を軽減するための,シンプルで効果的な2つのアプローチを提案する。
論文 参考訳(メタデータ) (2021-06-07T01:55:34Z) - Syntax-aware Data Augmentation for Neural Machine Translation [76.99198797021454]
本稿では,ニューラルマシン翻訳のための新しいデータ拡張戦略を提案する。
文中の役割を考慮し,単語選択のための文特異的確率を設定した。
提案手法はWMT14の英語-ドイツ語データセットとIWSLT14のドイツ語-英語データセットを用いて評価する。
論文 参考訳(メタデータ) (2020-04-29T13:45:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。