論文の概要: Improving Neural Machine Translation by Bidirectional Training
- arxiv url: http://arxiv.org/abs/2109.07780v1
- Date: Thu, 16 Sep 2021 07:58:33 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-18 00:40:55.805305
- Title: Improving Neural Machine Translation by Bidirectional Training
- Title(参考訳): 双方向学習によるニューラルマシン翻訳の改善
- Authors: Liang Ding, Di Wu, Dacheng Tao
- Abstract要約: 我々は、ニューラルネットワーク翻訳のためのシンプルで効果的な事前学習戦略である双方向トレーニング(BiT)を提案する。
具体的には、初期モデルのパラメータを双方向に更新し、正常にモデルを調整する。
実験の結果,BiTは8つの言語対上の15の翻訳タスクに対して,SOTAニューラルマシン翻訳性能を著しく向上させることがわかった。
- 参考スコア(独自算出の注目度): 85.64797317290349
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: We present a simple and effective pretraining strategy -- bidirectional
training (BiT) for neural machine translation. Specifically, we bidirectionally
update the model parameters at the early stage and then tune the model
normally. To achieve bidirectional updating, we simply reconstruct the training
samples from "src$\rightarrow$tgt" to "src+tgt$\rightarrow$tgt+src" without any
complicated model modifications. Notably, our approach does not increase any
parameters or training steps, requiring the parallel data merely. Experimental
results show that BiT pushes the SOTA neural machine translation performance
across 15 translation tasks on 8 language pairs (data sizes range from 160K to
38M) significantly higher. Encouragingly, our proposed model can complement
existing data manipulation strategies, i.e. back translation, data
distillation, and data diversification. Extensive analyses show that our
approach functions as a novel bilingual code-switcher, obtaining better
bilingual alignment.
- Abstract(参考訳): 我々は、ニューラルネットワーク翻訳のためのシンプルで効果的な事前学習戦略である双方向トレーニング(BiT)を提案する。
具体的には、初期モデルのパラメータを双方向に更新し、正常にモデルを調整する。
双方向更新を実現するために、トレーニングサンプルを"src$\rightarrow$tgt"から"src+tgt$\rightarrow$tgt+src"に再構成し、複雑なモデル修正を行わない。
特に、我々のアプローチはパラメータやトレーニングステップを増やさず、単に並列データを必要とします。
実験の結果, BiTは8つの言語対(データサイズは160Kから38M)上の15の翻訳タスクに対して, SOTAニューラルマシン翻訳性能を著しく向上させることがわかった。
提案手法は,既存のデータ操作戦略,すなわち逆変換,データ蒸留,データ多様化を補完する。
本手法がバイリンガルなコードスウィッチャーとして機能し,より優れたバイリンガルアライメントが得られた。
関連論文リスト
- Efficient Machine Translation with a BiLSTM-Attention Approach [0.0]
本稿では,翻訳品質の向上を目的とした新しいSeq2Seqモデルを提案する。
このモデルでは、双方向長短期記憶ネットワーク(Bidirectional Long Short-Term Memory Network, Bi-LSTM)をエンコーダとして使用し、入力シーケンスのコンテキスト情報をキャプチャする。
現在の主流トランスフォーマーモデルと比較して,本モデルはWMT14機械翻訳データセットにおいて優れた性能を発揮する。
論文 参考訳(メタデータ) (2024-10-29T01:12:50Z) - On the Pareto Front of Multilingual Neural Machine Translation [123.94355117635293]
我々は、ニューラルネットワーク翻訳(MNMT)におけるサンプリング比によって、与えられた方向の性能がどう変化するかを検討する。
我々は,MNMTにおけるユニークなパフォーマンストレードオフフロントを予測するために,ダブルパワー法を提案する。
本実験では, トレーニング予算の1/5から1/2に過ぎず, 温度探索法や勾配操作法よりも優れた性能が得られた。
論文 参考訳(メタデータ) (2023-04-06T16:49:19Z) - Multilingual Bidirectional Unsupervised Translation Through Multilingual
Finetuning and Back-Translation [23.401781865904386]
本研究では,NMTモデルをトレーニングし,未知の言語を英語と英語の両方に翻訳する2段階のアプローチを提案する。
最初の段階では、事前訓練されたXLM-RおよびRoBERTa重みにエンコーダデコーダモデルを初期化し、40言語で並列データに対して多言語微調整を行う。
第2段階では、この一般化機能を活用して、単言語データセットから合成並列データを生成し、その後、連続した後方翻訳ラウンドで双方向に訓練する。
論文 参考訳(メタデータ) (2022-09-06T21:20:41Z) - Improving Neural Machine Translation by Denoising Training [95.96569884410137]
本稿では,ニューラルネットワーク翻訳のためのトレーニングDoTの簡易かつ効果的な事前学習戦略を提案する。
モデルパラメータを、初期段階のソースおよびターゲットサイドのDenoisingタスクで更新し、正常にモデルをチューニングします。
実験によると、DoTは12のバイリンガルと16の多言語方向にわたるニューラルマシン翻訳性能を一貫して改善している。
論文 参考訳(メタデータ) (2022-01-19T00:11:38Z) - The USYD-JD Speech Translation System for IWSLT 2021 [85.64797317290349]
本稿では,シドニー大学とJDが共同でIWSLT 2021低リソース音声翻訳タスクを提出したことを述べる。
私たちは、公式に提供されたASRとMTデータセットでモデルをトレーニングしました。
翻訳性能の向上を目的として, バック翻訳, 知識蒸留, 多機能再構成, トランスダクティブファインタニングなど, 最新の効果的な手法について検討した。
論文 参考訳(メタデータ) (2021-07-24T09:53:34Z) - Few-shot learning through contextual data augmentation [74.20290390065475]
機械翻訳モデルは、時間とともに性能を維持するために新しいデータに適応する必要がある。
一つの例から5つの例への適応が可能であることを示す。
本モデルでは,平均313個の並列例でトレーニングした基準システムよりも精度がよいことを示す。
論文 参考訳(メタデータ) (2021-03-31T09:05:43Z) - Meta Back-translation [111.87397401837286]
プリトレーニングされたバック翻訳モデルから擬似並列データを生成する新しい手法を提案する。
本手法は,生成する擬似並列データに対して,検証セット上で良好な処理を行うためのフォワードトランスレーションモデルを訓練するように,事前訓練されたバックトランスレーションモデルを適用するメタラーニングアルゴリズムである。
論文 参考訳(メタデータ) (2021-02-15T20:58:32Z) - Enhanced back-translation for low resource neural machine translation
using self-training [0.0]
本研究は,後進モデルの出力を用いて前方翻訳手法を用いてモデル自体を改善する自己学習戦略を提案する。
この技術は、ベースラインの低リソースであるIWSLT'14とIWSLT'15をそれぞれ11.06と1.5BLEUに改良することを示した。
改良された英語-ドイツ語の後方モデルによって生成された合成データを用いて前方モデルを訓練し、2.7BLEUで標準の後方翻訳を用いて訓練された別の前方モデルより優れていた。
論文 参考訳(メタデータ) (2020-06-04T14:19:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。