論文の概要: Variational Bayes Made Easy
- arxiv url: http://arxiv.org/abs/2304.14251v2
- Date: Mon, 10 Jul 2023 15:13:02 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-11 18:36:56.335473
- Title: Variational Bayes Made Easy
- Title(参考訳): 変分ベイが簡単になった
- Authors: Mohammad Emtiyaz Khan
- Abstract要約: 我々は、よく知られた分布の期待に対して、線形性を明確に求めることで、後部形式を特定するための3段階のレシピを与える。
すると、これらの期待の前の条件を単に読み取るだけで、アップデートを直接書くことができます。
- 参考スコア(独自算出の注目度): 17.78922280604534
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Variational Bayes is a popular method for approximate inference but its
derivation can be cumbersome. To simplify the process, we give a 3-step recipe
to identify the posterior form by explicitly looking for linearity with respect
to expectations of well-known distributions. We can then directly write the
update by simply ``reading-off'' the terms in front of those expectations. The
recipe makes the derivation easier, faster, shorter, and more general.
- Abstract(参考訳): 変分ベイズは近似推論の一般的な方法であるが、その導出は困難である。
この過程を単純化するために、よく知られた分布の期待に対して線形性を明確に求めることで、後部形態を識別するための3段階のレシピを与える。
すると、これらの期待を前に、単に‘reading-off’という用語でアップデートを直接書くことができます。
レシピは、より簡単で、より速く、より短く、より一般的である。
関連論文リスト
- DistPred: A Distribution-Free Probabilistic Inference Method for Regression and Forecasting [14.390842560217743]
本稿では、回帰予測タスクのためのDistPredという新しい手法を提案する。
予測分布と対象分布の差分を測定するための適切なスコアリングルールを、微分可能な離散形式に変換する。
これにより、モデルは単一のフォワードパスで多数のサンプルをサンプリングし、応答変数の潜在的分布を推定することができる。
論文 参考訳(メタデータ) (2024-06-17T10:33:00Z) - Bayesian Online Natural Gradient (BONG) [9.800443064368467]
変分ベイズ(VB)に基づく逐次ベイズ推論への新しいアプローチを提案する。
重要な洞察は、オンライン環境では、前もって正規化するためにKLという用語を追加する必要はありません。
提案手法は,非共役条件下での他のオンラインVB手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2024-05-30T04:27:36Z) - Variational Prediction [95.00085314353436]
本稿では,変動境界を用いた後部予測分布に対する変動近似の学習手法を提案する。
このアプローチは、テスト時間の限界化コストを伴わずに、優れた予測分布を提供することができる。
論文 参考訳(メタデータ) (2023-07-14T18:19:31Z) - Robust and Scalable Bayesian Online Changepoint Detection [4.350783459690612]
本稿では、変更点検出のためのオンラインで、確実に堅牢でスケーラブルなベイズ的手法を提案する。
結果のアルゴリズムは正確で、単純な代数で更新でき、最も近い競合より10倍以上高速である。
論文 参考訳(メタデータ) (2023-02-09T16:49:20Z) - Bayesian Prompt Learning for Image-Language Model Generalization [64.50204877434878]
我々はベイズ法の正規化能力を用いて、変分推論問題としてプロンプト学習をフレーム化する。
提案手法は,プロンプト空間を正規化し,目に見えないプロンプトへの過剰適合を低減し,目に見えないプロンプトのプロンプト一般化を改善する。
ベイジアン・プロンプト学習がプロンプト空間の適切なカバレッジを提供する15のベンチマークを実証的に示す。
論文 参考訳(メタデータ) (2022-10-05T17:05:56Z) - Fair Wrapping for Black-box Predictions [105.10203274098862]
予測を修飾するα木として定義したラッパー関数を学習する。
この修正は, アルファツリーの構成, 一般化, 解釈可能性, および修正された予測とオリジナル予測のKLの相違に関して, 魅力的な性質を有することを示す。
論文 参考訳(メタデータ) (2022-01-31T01:02:39Z) - Train Short, Test Long: Attention with Linear Biases Enables Input
Length Extrapolation [62.51758040848735]
本稿では,リニアバイアス(ALiBi)を用いた簡易かつ効率的な検査法を提案する。
ALiBiは、単語の埋め込みに位置埋め込みを加えるのではなく、クエリキーのアテンションスコアを、その距離に比例する用語でバイアスする。
本手法では,長さ2048の入力シーケンスに外挿する長さ1024の入力シーケンスに対して,13億のパラメータモデルをトレーニングすることが可能であり,長さ2048の入力に基づいてトレーニングされた正弦波位置埋め込みモデルと同じ難易度を実現する。
論文 参考訳(メタデータ) (2021-08-27T17:35:06Z) - The FMRIB Variational Bayesian Inference Tutorial II: Stochastic
Variational Bayes [1.827510863075184]
このチュートリアルは、オリジナルのFMRIB Variational Bayesチュートリアルを再考する。
この新しいアプローチは、機械学習アルゴリズムに適用された計算方法に多くの類似性を持ち、恩恵を受けている。
論文 参考訳(メタデータ) (2020-07-03T11:31:52Z) - Optimal Change-Point Detection with Training Sequences in the Large and
Moderate Deviations Regimes [72.68201611113673]
本稿では,情報理論の観点から,新しいオフライン変化点検出問題について検討する。
基礎となる事前および変更後分布の知識は分かっておらず、利用可能なトレーニングシーケンスからのみ学習できると仮定する。
論文 参考訳(メタデータ) (2020-03-13T23:39:40Z) - Bayesian Deep Learning and a Probabilistic Perspective of Generalization [56.69671152009899]
ディープアンサンブルはベイズ辺化を近似する有効なメカニズムであることを示す。
また,アトラクションの流域内での辺縁化により,予測分布をさらに改善する関連手法を提案する。
論文 参考訳(メタデータ) (2020-02-20T15:13:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。