論文の概要: Towards Efficient and Comprehensive Urban Spatial-Temporal Prediction: A
Unified Library and Performance Benchmark
- arxiv url: http://arxiv.org/abs/2304.14343v4
- Date: Sat, 1 Jul 2023 14:52:00 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-04 13:32:55.098455
- Title: Towards Efficient and Comprehensive Urban Spatial-Temporal Prediction: A
Unified Library and Performance Benchmark
- Title(参考訳): 都市空間時間予測の効率化に向けて:統一図書館と性能ベンチマーク
- Authors: Jiawei Jiang, Chengkai Han, Wenjun Jiang, Wayne Xin Zhao, Jingyuan
Wang
- Abstract要約: 本稿では,都市空間時空間予測のレビューを行い,原子ファイルと呼ばれる空間時空間データの統一記憶形式を提案する。
我々はまた、研究者に信頼性のある実験ツールと便利な開発フレームワークを提供するオープンソースライブラリであるLibCityを提案しています。
- 参考スコア(独自算出の注目度): 46.27472917650492
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As deep learning technology advances and more urban spatial-temporal data
accumulates, an increasing number of deep learning models are being proposed to
solve urban spatial-temporal prediction problems. However, there are
limitations in the existing field, including open-source data being in various
formats and difficult to use, few papers making their code and data openly
available, and open-source models often using different frameworks and
platforms, making comparisons challenging. A standardized framework is urgently
needed to implement and evaluate these methods. To address these issues, we
provide a comprehensive review of urban spatial-temporal prediction and propose
a unified storage format for spatial-temporal data called atomic files. We also
propose LibCity, an open-source library that offers researchers a credible
experimental tool and a convenient development framework. In this library, we
have reproduced 65 spatial-temporal prediction models and collected 55
spatial-temporal datasets, allowing researchers to conduct comprehensive
experiments conveniently. Using LibCity, we conducted a series of experiments
to validate the effectiveness of different models and components, and we
summarized promising future technology developments and research directions for
spatial-temporal prediction. By enabling fair model comparisons, designing a
unified data storage format, and simplifying the process of developing new
models, LibCity is poised to make significant contributions to the
spatial-temporal prediction field.
- Abstract(参考訳): 深層学習技術が進歩し、都市空間時空間データが蓄積するにつれて、都市空間時空間予測問題を解決するための深層学習モデルが増えている。
しかし、既存の分野には、さまざまなフォーマットで、使いづらいオープンソースのデータ、コードとデータをオープンに利用可能にする論文、さまざまなフレームワークやプラットフォームを使用するオープンソースモデルなど、制限があり、比較が難しい。
これらのメソッドを実装し評価するには、標準化されたフレームワークが緊急に必要です。
これらの課題に対処するため、都市空間時空間予測の総合的なレビューを行い、原子ファイルと呼ばれる空間時空間データの統一記憶形式を提案する。
また、libcityは、研究者に信頼できる実験ツールと便利な開発フレームワークを提供するオープンソースライブラリである。
本図書館では,65の空間-時間予測モデルを再現し,55の空間-時間データセットを収集した。
LibCityを用いて、異なるモデルやコンポーネントの有効性を検証する一連の実験を行い、将来有望な技術開発と研究の方向性を時空間予測のために要約した。
公平なモデル比較を可能にし、統一されたデータストレージフォーマットを設計し、新しいモデルの開発プロセスを簡単にすることで、libcityは空間-時間予測分野に大きな貢献をする準備が整っている。
関連論文リスト
- XXLTraffic: Expanding and Extremely Long Traffic Dataset for Ultra-Dynamic Forecasting Challenges [3.7509821052818118]
XXLTrafficは、最も長いタイムパンとセンサーノード数の増加で利用可能な公開トラフィックデータセットである。
我々のデータセットは、既存の時間的データ資源を補完し、この領域における新しい研究の方向性につながる。
論文 参考訳(メタデータ) (2024-06-18T15:06:22Z) - A Survey of Generative Techniques for Spatial-Temporal Data Mining [93.55501980723974]
本稿では,空間時間データマイニングにおける生成技術の統合に焦点を当てる。
本稿では,生成技術に基づく時空間法を包括的に分析する。
また、空間時間データマイニングパイプライン用に特別に設計された標準化されたフレームワークも導入されている。
論文 参考訳(メタデータ) (2024-05-15T12:07:43Z) - UrbanGPT: Spatio-Temporal Large Language Models [34.79169613947957]
本稿では,時空間エンコーダと命令調整パラダイムをシームレスに統合するUrbanPTを提案する。
我々は、様々な公開データセットに対して広範囲な実験を行い、異なる時間的予測タスクをカバーした。
結果は、慎重に設計されたアーキテクチャを持つUrbanPTが、最先端のベースラインを一貫して上回っていることを一貫して示しています。
論文 参考訳(メタデータ) (2024-02-25T12:37:29Z) - Spatial-temporal Forecasting for Regions without Observations [13.805203053973772]
本研究では,歴史的観察を伴わない関心領域の時空間予測について検討した。
タスクに対してSTSMというモデルを提案する。
私たちの重要な洞察は、関心のある領域に類似している場所から学ぶことです。
論文 参考訳(メタデータ) (2024-01-19T06:26:05Z) - Large Models for Time Series and Spatio-Temporal Data: A Survey and
Outlook [95.32949323258251]
時系列データ、特に時系列データと時間時間データは、現実世界のアプリケーションで広く使われている。
大規模言語やその他の基礎モデルの最近の進歩は、時系列データマイニングや時間データマイニングでの使用の増加に拍車を掛けている。
論文 参考訳(メタデータ) (2023-10-16T09:06:00Z) - Pushing the Limits of Pre-training for Time Series Forecasting in the
CloudOps Domain [54.67888148566323]
クラウドオペレーションドメインから,大規模時系列予測データセットを3つ導入する。
強力なゼロショットベースラインであり、モデルとデータセットサイズの両方において、さらなるスケーリングの恩恵を受けています。
これらのデータセットと結果を取得することは、古典的および深層学習のベースラインを事前訓練された方法と比較した総合的なベンチマーク結果の集合である。
論文 参考訳(メタデータ) (2023-10-08T08:09:51Z) - Unified Data Management and Comprehensive Performance Evaluation for
Urban Spatial-Temporal Prediction [Experiment, Analysis & Benchmark] [78.05103666987655]
この研究は、多様な都市空間時間データセットにアクセスし活用する際の課題に対処する。
都市空間・時空間のビッグデータ用に設計された統合ストレージフォーマットであるアトミックファイルを導入し,40種類の多様なデータセットでその有効性を検証する。
多様なモデルとデータセットを使用して広範な実験を行い、パフォーマンスリーダーボードを確立し、有望な研究方向性を特定する。
論文 参考訳(メタデータ) (2023-08-24T16:20:00Z) - OpenSTL: A Comprehensive Benchmark of Spatio-Temporal Predictive
Learning [67.07363529640784]
提案するOpenSTLは,一般的なアプローチを再帰的モデルと再帰的モデルに分類する。
我々は, 合成移動物体軌道, 人間の動き, 運転シーン, 交通流, 天気予報など, さまざまな領域にわたるデータセットの標準評価を行う。
リカレントフリーモデルは、リカレントモデルよりも効率と性能のバランスが良いことがわかった。
論文 参考訳(メタデータ) (2023-06-20T03:02:14Z) - Survey of Federated Learning Models for Spatial-Temporal Mobility
Applications [9.896508514316812]
フェデレートラーニング(FL)は、空間時間モデルを訓練するための理想的な候補として機能する。
既存の時空間モデルから分散学習への移行には,ユニークな課題がある。
論文 参考訳(メタデータ) (2023-05-09T08:26:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。