Operator growth and black hole formation
- URL: http://arxiv.org/abs/2304.14351v2
- Date: Wed, 5 Jul 2023 21:24:21 GMT
- Title: Operator growth and black hole formation
- Authors: Felix M. Haehl and Ying Zhao
- Abstract summary: When two particles collide in anally AdS spacetime with high enough energy and small enough impact parameter, they can form a black hole.
Motivated by dual quantum circuit considerations, we propose a threshold condition for black hole formation.
- Score: 3.793716747008753
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: When two particles collide in an asymptotically AdS spacetime with high
enough energy and small enough impact parameter, they can form a black hole.
Motivated by dual quantum circuit considerations, we propose a threshold
condition for black hole formation. Intuitively the condition can be understood
as the onset of overlap of the butterfly cones describing the ballistic spread
of the effect of the perturbations on the boundary systems. We verify the
correctness of the condition in three bulk dimensions. We describe a six-point
correlation function that can diagnose this condition and compute it in
two-dimensional CFTs using eikonal resummation.
Related papers
- Casimir Energy in (2 + 1)-Dimensional Field Theories [44.99833362998488]
Two types of boundary conditions give rise to two different exponential decay regimes of the Casimir energy at large distances.
Non-perturbative numerical simulations and analytical arguments show such an exponential decay for Dirichlet boundary conditions of SU(2) gauge theories.
arXiv Detail & Related papers (2024-05-06T18:08:31Z) - Signatures of Rotating Black Holes in Quantum Superposition [0.09118034517251884]
We show that a two-level system interacting with a quantum field residing in the spacetime exhibits resonant peaks in its response at certain values of the superposed masses.
Our results suggest that deeper insights into quantum-gravitational phenomena may be accessible via tools in relativistic quantum information and curved spacetime quantum field theory.
arXiv Detail & Related papers (2023-10-16T22:24:21Z) - Real-time dynamics of false vacuum decay [49.1574468325115]
We investigate false vacuum decay of a relativistic scalar field in the metastable minimum of an asymmetric double-well potential.
We employ the non-perturbative framework of the two-particle irreducible (2PI) quantum effective action at next-to-leading order in a large-N expansion.
arXiv Detail & Related papers (2023-10-06T12:44:48Z) - Interference induced anisotropy in a two-dimensional dark state optical
lattice [0.0]
We describe a two-dimensional optical lattice for ultracold atoms with spatial features below the diffraction limit.
We numerically investigate the energy spectrum including decay from the excited state, and find that the adiabatic approximation is sound for strong coupling strengths.
arXiv Detail & Related papers (2023-04-01T12:02:25Z) - Quantum simulation of Hawking radiation and curved spacetime with a
superconducting on-chip black hole [18.605453401936643]
We report a fermionic lattice-model-type realization of an analogue black hole by using a chain of 10 superconducting transmon qubits with interactions mediated by 9 transmon-type tunable couplers.
The quantum walks of quasi-particle in the curved spacetime reflect the gravitational effect near the black hole, resulting in the behaviour of stimulated Hawking radiation.
arXiv Detail & Related papers (2021-11-22T10:17:23Z) - Causal connectability between quantum systems and the black hole
interior in holographic duality [7.226961695849204]
In holographic duality an eternal AdS black hole is described by two copies of the boundary CFT in the thermal field double state.
This identification has many puzzles, including the boundary descriptions of the event horizons, the interiors of the black hole, and the singularities.
arXiv Detail & Related papers (2021-10-11T18:00:01Z) - Six-point functions and collisions in the black hole interior [71.67770216265583]
We consider two signals sent from the boundaries into the black hole interior shared between the two regions.
We compute three different out-of-time-order six-point functions to quantify various properties of the collision.
arXiv Detail & Related papers (2021-05-26T18:01:23Z) - Evolution of a Non-Hermitian Quantum Single-Molecule Junction at
Constant Temperature [62.997667081978825]
We present a theory for describing non-Hermitian quantum systems embedded in constant-temperature environments.
We find that the combined action of probability losses and thermal fluctuations assists quantum transport through the molecular junction.
arXiv Detail & Related papers (2021-01-21T14:33:34Z) - Geometric Quantum Information Structure in Quantum Fields and their
Lattice Simulation [0.0]
An upper limit to distillable entanglement has an exponential decay defined by a geometric decay constant.
When regulated at short distances with a spatial lattice, this entanglement abruptly vanishes beyond a dimensionless separation.
We highlight potential impacts of the distillable entanglement structure on effective field theories, lattice QCD calculations and future quantum simulations.
arXiv Detail & Related papers (2020-08-09T04:26:49Z) - The role of boundary conditions in quantum computations of scattering
observables [58.720142291102135]
Quantum computing may offer the opportunity to simulate strongly-interacting field theories, such as quantum chromodynamics, with physical time evolution.
As with present-day calculations, quantum computation strategies still require the restriction to a finite system size.
We quantify the volume effects for various $1+1$D Minkowski-signature quantities and show that these can be a significant source of systematic uncertainty.
arXiv Detail & Related papers (2020-07-01T17:43:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.