The Ising model as a window on quantum gravity with matter
- URL: http://arxiv.org/abs/2502.19015v2
- Date: Thu, 06 Mar 2025 14:50:34 GMT
- Title: The Ising model as a window on quantum gravity with matter
- Authors: Romuald A. Janik,
- Abstract summary: We argue that the Ising model CFT can be used to obtain some clear insights into 3D (quantum) gravity with matter.<n>We provide an explanation in terms of the properties of bulk matter fields interacting with the BTZ black hole.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We argue that the Ising model CFT can be used to obtain some clear insights into 3D (quantum) gravity with matter. We review arguments for the existence of its holographic description, and concentrate on the time dependence of perturbations of the theory at high temperature, which would correspond to throwing matter into a black hole in the dual picture. Apart from an expected QNM-like exponential damping, we observe a plateau, a burst and a subsequent re-emergence of the whole signal, the latter being apparently at odds with a black hole interpretation. We provide an explanation of this phenomenon in terms of the properties of bulk matter fields interacting with the BTZ black hole and the fact that the geometry/metric is not fundamental but a derived quantity in the Chern-Simons formulation of 3D gravity. This allows for evading the black hole information paradox in the present context.
Related papers
- Semiclassical gravity phenomenology under the causal-conditional quantum measurement prescription II: Heisenberg picture and apparent optical entanglement [13.04737397490371]
In quantum gravity theory, a state-dependent gravitational potential introduces nonlinearity into the state evolution.
The formalism for understanding the continuous quantum measurement process on the quantum state has been previously discussed using the Schr"odinger picture.
In this work, an equivalent formalism using the Heisenberg picture is developed and applied to the analysis of two optomechanical experiment protocols.
arXiv Detail & Related papers (2024-11-08T14:07:18Z) - Entropic uncertainty relations in Schwarzschild space-time [10.560954016047198]
We propose a generalized entropic uncertainty relation for arbitrary multiple-observable in multipartite system.
We discuss the proposed uncertainty relations and quantum coherence in the context of Schwarzschild space-time.
arXiv Detail & Related papers (2024-07-18T02:26:21Z) - Lattice Holography on a Quantum Computer [10.205744392217532]
We compute the ground state of a spin system on a $(2+1)$-dimensional hyperbolic lattice.
We observe that with achievable resources for coming quantum devices, the correlation function demonstrates an approximate scale-invariant behavior.
arXiv Detail & Related papers (2023-12-16T21:48:24Z) - Two-dimensional non-Hermitian skin effect in an ultracold Fermi gas [8.925244794690562]
We create a non-Hermitian band for ultracold fermions in spin-orbit-coupled optical lattices with tunable dissipation.
We observe the real-space dynamical signature of NHSE in real space by monitoring the center of mass motion of atoms.
Our work paves the way for understanding the interplay of quantum statistics with NHSE.
arXiv Detail & Related papers (2023-11-14T06:18:33Z) - On Quantum Information Before the Page Time [0.0]
We show significant quantum information regarding the quantum state of the black hole prior to the Page time.
By computing the quantum fidelity in a 2D boundary conformal field theory model of black hole evaporation, we demonstrate that an observer outside of an evaporating black hole may distinguish different black holes.
arXiv Detail & Related papers (2022-12-13T19:00:00Z) - AdS/CFT Correspondence with a 3D Black Hole Simulator [0.0]
We use a square lattice of fermions with inhomogeneous tunneling couplings to simulate rotationally symmetric 3D black holes on Dirac fields.
We identify the parametric regime where the theoretically predicted 2D CFT faithfully describes the black hole entanglement entropy.
With the help of the universal simulator we further demonstrate that a large family of 3D black holes exhibit the same ground state entanglement entropy behavior as the BTZ black hole.
arXiv Detail & Related papers (2022-11-28T13:36:32Z) - Breakdown of quantum mechanics in gravitational holography [0.0]
Black hole complementarity is inevitably linked to holography and states that information associated with the collapsed pure state is reflected in the near horizon region.
We argue that the information preserving quantum atmosphere of the black hole emerges from hidden variables on its horizon.
In AdS/CFT, this would mean that the completion of the semiclassical subalgebra to the complete boundary algebra has to be traced back to the emergent near horizon space structure.
arXiv Detail & Related papers (2022-08-01T17:52:29Z) - Gravitationally Lensed Black Hole Emission Tomography [21.663531093434127]
We propose BH-NeRF, a novel tomography approach that leverages gravitational lensing to recover the continuous 3D emission field near a black hole.
Our method captures the unknown emission field using a continuous volumetric function parameterized by a coordinate-based neural network.
This work takes the first steps in showing how future measurements from the Event Horizon Telescope could be used to recover evolving 3D emission around the supermassive black hole in our Galactic center.
arXiv Detail & Related papers (2022-04-07T20:09:51Z) - Quantum simulation of Hawking radiation and curved spacetime with a
superconducting on-chip black hole [18.605453401936643]
We report a fermionic lattice-model-type realization of an analogue black hole by using a chain of 10 superconducting transmon qubits with interactions mediated by 9 transmon-type tunable couplers.
The quantum walks of quasi-particle in the curved spacetime reflect the gravitational effect near the black hole, resulting in the behaviour of stimulated Hawking radiation.
arXiv Detail & Related papers (2021-11-22T10:17:23Z) - Quantum vacuum excitation of a quasi-normal mode in an analog model of
black hole spacetime [19.767470853445776]
We use a driven-dissipative quantum fluid of microcavity polaritons as an analog model of a quantum field theory on a black-hole spacetime.
We show that, in addition to the Hawking effect at the sonic horizon, quantum fluctuations may result in a sizeable stationary excitation of a quasi-normal mode of the field theory.
arXiv Detail & Related papers (2021-10-27T14:16:12Z) - Emerging (2+1)D massive graviton in graphene-like systems [0.0]
Quantum aspects of gravity, such as massive gravitons, can emerge in experiments with fractional quantum Hall liquids.
We employ (2+1)-dimensional Dirac fermions, emerging in the continuous limit of a fermionic honeycomb lattice, coupled to massive gravitons, simulated by bosonic modes.
The similarity of our approach to current optical lattice configurations suggests that quantum signatures of gravity can be simulated in the laboratory in the near future.
arXiv Detail & Related papers (2021-09-15T19:37:29Z) - What can we learn about islands and state paradox from quantum
information theory? [10.24376036299883]
We show that the Page curve can still be realized even if information is lost and the information paradox can be attributed to the measurement problem.
Though speculative, the similarities between the black hole information problem and the measurement problem may suggest some link in the origins of the two fundamental issues of distant fields.
arXiv Detail & Related papers (2021-07-20T02:03:09Z) - Global symmetry, Euclidean gravity, and the black hole information
problem [0.0]
We argue for a close connection between the non-existence of global symmetries in quantum gravity and a unitary resolution of the black hole information problem.
Motivated by this discussion, we conjecture that in a certain sense Euclidean quantum gravity is equivalent to holography.
arXiv Detail & Related papers (2020-10-20T18:00:04Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.