論文の概要: Maximizing Model Generalization for Machine Condition Monitoring with
Self-Supervised Learning and Federated Learning
- arxiv url: http://arxiv.org/abs/2304.14398v2
- Date: Fri, 22 Sep 2023 00:44:44 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-25 19:03:46.119298
- Title: Maximizing Model Generalization for Machine Condition Monitoring with
Self-Supervised Learning and Federated Learning
- Title(参考訳): 自己教師付き学習と連合学習による機械状態監視のためのモデル一般化
- Authors: Matthew Russell and Peng Wang
- Abstract要約: Deep Learningは、手動で設計された統計的特徴なしで、障害を診断し、生の状態監視データからマシンの健康を評価する。
伝統的な教師付き学習は、目に見えない対象ドメインに一般化するコンパクトで差別的な表現を学ぶのに苦労することがある。
本研究は,対象領域にモデルをコピーするために,ソース領域における特徴一般化の最大化と重み移動によるTLの適用に焦点をあてる。
- 参考スコア(独自算出の注目度): 4.214064911004321
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep Learning (DL) can diagnose faults and assess machine health from raw
condition monitoring data without manually designed statistical features.
However, practical manufacturing applications remain extremely difficult for
existing DL methods. Machine data is often unlabeled and from very few health
conditions (e.g., only normal operating data). Furthermore, models often
encounter shifts in domain as process parameters change and new categories of
faults emerge. Traditional supervised learning may struggle to learn compact,
discriminative representations that generalize to these unseen target domains
since it depends on having plentiful classes to partition the feature space
with decision boundaries. Transfer Learning (TL) with domain adaptation
attempts to adapt these models to unlabeled target domains but assumes similar
underlying structure that may not be present if new faults emerge. This study
proposes focusing on maximizing the feature generality on the source domain and
applying TL via weight transfer to copy the model to the target domain.
Specifically, Self-Supervised Learning (SSL) with Barlow Twins may produce more
discriminative features for monitoring health condition than supervised
learning by focusing on semantic properties of the data. Furthermore, Federated
Learning (FL) for distributed training may also improve generalization by
efficiently expanding the effective size and diversity of training data by
sharing information across multiple client machines. Results show that Barlow
Twins outperforms supervised learning in an unlabeled target domain with
emerging motor faults when the source training data contains very few distinct
categories. Incorporating FL may also provide a slight advantage by diffusing
knowledge of health conditions between machines.
- Abstract(参考訳): deep learning (dl)は、手動で統計的特徴を設計せずに、障害を診断し、生の状態監視データからマシンヘルスを評価することができる。
しかし, 既存のDL法では, 実用化が極めて困難である。
マシンデータはしばしばラベルが付けられておらず、ごく少数の健康状態(例:通常の運用データのみ)からである。
さらに、プロセスパラメータが変化し、新しい障害カテゴリが出現するにつれて、モデルはドメインの変化に遭遇することが多い。
伝統的な教師付き学習は、特徴空間を決定境界で分割する豊富なクラスを持つことに依存するため、これらの目に見えない対象領域に一般化するコンパクトで差別的な表現を学ぶのに苦労する。
ドメイン適応型トランスファーラーニング(TL)は、これらのモデルをラベルのないターゲットドメインに適応させようとするが、新しい障害が出現しても存在しないような基盤構造を仮定する。
本研究は,対象領域にモデルをコピーするために,ソース領域における特徴一般化の最大化と重み移動によるTLの適用に焦点をあてる。
具体的には、Barlow Twinsによる自己監視学習(SSL)は、データのセマンティックな性質に焦点を当てることで、教師付き学習よりも、健康状態を監視するための差別的な特徴を生み出す可能性がある。
さらに、分散トレーニングのための連合学習(fl)は、複数のクライアントマシン間で情報を共有することにより、トレーニングデータの有効サイズと多様性を効率良く拡大することにより、一般化を改善できる。
以上の結果から,Barlow Twins は未ラベルの目標領域における教師あり学習において,ソーストレーニングデータがほとんど異なるカテゴリを含む場合,モータ障害が出現する傾向を示した。
FLを組み込むことは、マシン間で健康状態の知識を拡散させることで、わずかに有利になる。
関連論文リスト
- Learning Invariant Molecular Representation in Latent Discrete Space [52.13724532622099]
本稿では,分散シフトに対する不変性とロバスト性を示す分子表現を学習するための新しい枠組みを提案する。
我々のモデルは、様々な分布シフトが存在する場合に、最先端のベースラインに対してより強力な一般化を実現する。
論文 参考訳(メタデータ) (2023-10-22T04:06:44Z) - Curriculum-Based Augmented Fourier Domain Adaptation for Robust Medical
Image Segmentation [18.830738606514736]
本研究は、堅牢な医用画像分割のためのカリキュラムベースの拡張フーリエドメイン適応(Curri-AFDA)を提案する。
特に、カリキュラム学習戦略は、異なるレベルのデータシフトの下でのモデルの因果関係に基づいている。
複数のサイトやスキャナーから収集した網膜と核の2つのセグメンテーションタスクの実験から,提案手法が優れた適応と一般化性能をもたらすことが示唆された。
論文 参考訳(メタデータ) (2023-06-06T08:56:58Z) - Unifying and Personalizing Weakly-supervised Federated Medical Image
Segmentation via Adaptive Representation and Aggregation [1.121358474059223]
フェデレートラーニング(FL)は、データプライバシとセキュリティを損なうことなく、複数のサイトが協力して強力なディープモデルをトレーニングすることを可能にする。
微粒な監督を施した弱く監督されたセグメンテーションは、アノテーションコストを下げる大きな可能性を秘めているため、ますます注目されている。
医用画像セグメンテーションのための新しいFLフレームワークであるFedICRAを提案する。
論文 参考訳(メタデータ) (2023-04-12T06:32:08Z) - Learning the Finer Things: Bayesian Structure Learning at the
Instantiation Level [0.0]
成功した機械学習手法は記憶と一般化の間のトレードオフを必要とする。
本稿では,探索的領域で学習し,一般化し,説明できる新しい確率的グラフィカルモデル構造学習手法を提案する。
論文 参考訳(メタデータ) (2023-03-08T02:31:49Z) - Robustness, Evaluation and Adaptation of Machine Learning Models in the
Wild [4.304803366354879]
本研究では、ドメインシフトに対するロバスト性の障害の原因と、ドメインロバストモデルをトレーニングするためのアルゴリズムを提案する。
モデル脆性の鍵となる原因はドメイン過度な適合であり、新しいトレーニングアルゴリズムはドメイン一般仮説を抑え、奨励する。
論文 参考訳(メタデータ) (2023-03-05T21:41:16Z) - CHALLENGER: Training with Attribution Maps [63.736435657236505]
ニューラルネットワークのトレーニングに属性マップを利用すると、モデルの正規化が向上し、性能が向上することを示す。
特に、我々の汎用的なドメインに依存しないアプローチは、ビジョン、自然言語処理、時系列タスクにおける最先端の結果をもたらすことを示す。
論文 参考訳(メタデータ) (2022-05-30T13:34:46Z) - Deep face recognition with clustering based domain adaptation [57.29464116557734]
そこで本研究では,ターゲットドメインとソースがクラスを共有しない顔認識タスクを対象とした,クラスタリングに基づく新しいドメイン適応手法を提案する。
本手法は,特徴領域をグローバルに整列させ,その一方で,対象クラスタを局所的に識別することで,識別対象特徴を効果的に学習する。
論文 参考訳(メタデータ) (2022-05-27T12:29:11Z) - Forget Less, Count Better: A Domain-Incremental Self-Distillation
Learning Benchmark for Lifelong Crowd Counting [51.44987756859706]
オフザシェルフ法は複数のドメインを扱うのにいくつかの欠点がある。
生涯クラウドカウンティングは、壊滅的な忘れを緩和し、一般化能力を改善することを目的としている。
論文 参考訳(メタデータ) (2022-05-06T15:37:56Z) - Federated Contrastive Learning for Volumetric Medical Image Segmentation [16.3860181959878]
フェデレートラーニング(FL)は、プライバシのためのトレーニングデータをローカルに保持しながら、共有モデルを学ぶことで、この点において役立つ。
従来のFLはトレーニングのために完全にラベル付けされたデータを必要とする。
そこで本研究では,アノテーションを限定したボリューム・メディカル・イメージ・セグメンテーションのためのFCLフレームワークを提案する。
論文 参考訳(メタデータ) (2022-04-23T03:47:23Z) - Adaptive Risk Minimization: Learning to Adapt to Domain Shift [109.87561509436016]
ほとんどの機械学習アルゴリズムの基本的な前提は、トレーニングとテストデータは、同じ基礎となる分布から引き出されることである。
本研究では,学習データをドメインに構造化し,複数のテスト時間シフトが存在する場合の領域一般化の問題点について考察する。
本稿では、適応リスク最小化(ARM)の枠組みを紹介し、モデルがトレーニング領域に適応することを学ぶことで、効果的な適応のために直接最適化される。
論文 参考訳(メタデータ) (2020-07-06T17:59:30Z) - Few-Shot Learning as Domain Adaptation: Algorithm and Analysis [120.75020271706978]
わずかながらの学習は、目に見えないクラスを認識するために、目に見えないクラスから学んだ事前知識を使用する。
このクラス差による分布シフトは、ドメインシフトの特別なケースとみなすことができる。
メタラーニングフレームワークにおいて、そのようなドメインシフト問題に明示的に対処するために、注意を向けたプロトタイプドメイン適応ネットワーク(DAPNA)を提案する。
論文 参考訳(メタデータ) (2020-02-06T01:04:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。