論文の概要: Large-Scale Targeted Cause Discovery with Data-Driven Learning
- arxiv url: http://arxiv.org/abs/2408.16218v2
- Date: Mon, 07 Apr 2025 06:11:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-08 14:07:33.680606
- Title: Large-Scale Targeted Cause Discovery with Data-Driven Learning
- Title(参考訳): データ駆動学習による大規模目標原因発見
- Authors: Jang-Hyun Kim, Claudia Skok Gibbs, Sangdoo Yun, Hyun Oh Song, Kyunghyun Cho,
- Abstract要約: 本稿では,観測結果から対象変数の因果変数を推定する機械学習手法を提案する。
ローカル推論戦略を用いることで、我々のアプローチは変数数に線形な複雑さを伴ってスケールし、数千の変数に効率的にスケールアップする。
大規模遺伝子制御ネットワークにおける因果関係の同定に優れた性能を示す実験結果が得られた。
- 参考スコア(独自算出の注目度): 66.86881771339145
- License:
- Abstract: We propose a novel machine learning approach for inferring causal variables of a target variable from observations. Our focus is on directly inferring a set of causal factors without requiring full causal graph reconstruction, which is computationally challenging in large-scale systems. The identified causal set consists of all potential regulators of the target variable under experimental settings, enabling efficient regulation when intervention costs and feasibility vary across variables. To achieve this, we train a neural network using supervised learning on simulated data to infer causality. By employing a local-inference strategy, our approach scales with linear complexity in the number of variables, efficiently scaling up to thousands of variables. Empirical results demonstrate superior performance in identifying causal relationships within large-scale gene regulatory networks, outperforming existing methods that emphasize full-graph discovery. We validate our model's generalization capability across out-of-distribution graph structures and generating mechanisms, including gene regulatory networks of E. coli and the human K562 cell line. Implementation codes are available at https://github.com/snu-mllab/Targeted-Cause-Discovery.
- Abstract(参考訳): 本稿では,観測結果から対象変数の因果変数を推定する機械学習手法を提案する。
我々の焦点は、大規模システムでは計算が困難である完全な因果グラフ再構成を必要とせず、因果関係を直接推論することである。
同定された因果関係集合は、実験条件下での標的変数の潜在的な規制を全て含み、介入コストと実現可能性が異なる場合の効率的な規制を可能にする。
これを実現するために、シミュレーションデータに基づく教師あり学習を用いてニューラルネットワークをトレーニングし、因果関係を推定する。
ローカル推論戦略を用いることで、我々のアプローチは変数数に線形な複雑さを伴ってスケールし、数千の変数に効率的にスケールアップする。
その結果、大規模遺伝子制御ネットワークにおける因果関係の同定において優れた性能を示し、フルグラフ発見を重視した既存手法よりも優れていた。
我々は,E. coliの遺伝子制御ネットワークやヒトK562細胞株を含む,分布外グラフ構造および生成機構に関するモデルの一般化能力を検証した。
実装コードはhttps://github.com/snu-mllab/Targeted-Cause-Discovery.comで公開されている。
関連論文リスト
- Identifying perturbation targets through causal differential networks [23.568795598997376]
本稿では,生物学的システムの変更に責任を持つ変数を同定する因果性に着想を得たアプローチを提案する。
まず、観測データと干渉データからノイズの多い因果グラフを推定する。
次に、これらのグラフ間の差分を、追加の統計的特徴とともに、介入された変数の集合にマッピングすることを学ぶ。
論文 参考訳(メタデータ) (2024-10-04T12:48:21Z) - Multi-modal Causal Structure Learning and Root Cause Analysis [67.67578590390907]
根本原因局所化のためのマルチモーダル因果構造学習手法であるMulanを提案する。
ログ選択言語モデルを利用してログ表現学習を行い、ログシーケンスを時系列データに変換する。
また、モダリティの信頼性を評価し、最終因果グラフを共同学習するための新しいキーパフォーマンスインジケータ対応アテンション機構も導入する。
論文 参考訳(メタデータ) (2024-02-04T05:50:38Z) - Causal machine learning for single-cell genomics [94.28105176231739]
単細胞ゲノミクスへの機械学習技術の応用とその課題について論じる。
まず, 単一細胞生物学における現在の因果的アプローチの基盤となるモデルについて述べる。
次に、単一セルデータへの因果的アプローチの適用におけるオープンな問題を特定する。
論文 参考訳(メタデータ) (2023-10-23T13:35:24Z) - Structural restrictions in local causal discovery: identifying direct causes of a target variable [0.9208007322096533]
観測的関節分布から対象変数の直接的な原因の集合を学ぶことは、科学の基本的な問題である。
ここでは、完全なDAGではなく、1つのターゲット変数の直接的な原因を特定することにのみ関心があります。
これにより、識別可能性の仮定を緩和し、より高速で堅牢なアルゴリズムを開発することができる。
論文 参考訳(メタデータ) (2023-07-29T18:31:35Z) - VICause: Simultaneous Missing Value Imputation and Causal Discovery with
Groups [12.055670392677248]
提案するVICauseは,難読値の計算と因果発見をディープラーニングで効率的に行うための新しい手法である。
提案手法は,不備な値計算と因果発見の両方において,人気や近年のアプローチと比較して,性能が向上したことを示す。
論文 参考訳(メタデータ) (2021-10-15T17:35:20Z) - Learning Neural Causal Models with Active Interventions [83.44636110899742]
本稿では,データ生成プロセスの根底にある因果構造を素早く識別する能動的介入ターゲット機構を提案する。
本手法は,ランダムな介入ターゲティングと比較して,要求される対話回数を大幅に削減する。
シミュレーションデータから実世界のデータまで,複数のベンチマークにおいて優れた性能を示す。
論文 参考訳(メタデータ) (2021-09-06T13:10:37Z) - Systematic Evaluation of Causal Discovery in Visual Model Based
Reinforcement Learning [76.00395335702572]
AIと因果関係の中心的な目標は、抽象表現と因果構造を共同で発見することである。
因果誘導を研究するための既存の環境は、複雑なタスク固有の因果グラフを持つため、この目的には適していない。
本研究の目的は,高次変数の学習表現と因果構造の研究を促進することである。
論文 参考訳(メタデータ) (2021-07-02T05:44:56Z) - The Causal Neural Connection: Expressiveness, Learnability, and
Inference [125.57815987218756]
構造因果モデル (Structuor causal model, SCM) と呼ばれるオブジェクトは、調査中のシステムのランダムな変動のメカニズムと源の集合を表す。
本稿では, 因果的階層定理 (Thm. 1, Bareinboim et al., 2020) がまだニューラルモデルに対して成り立っていることを示す。
我々はニューラル因果モデル(NCM)と呼ばれる特殊なタイプのSCMを導入し、因果推論に必要な構造的制約をエンコードする新しいタイプの帰納バイアスを定式化する。
論文 参考訳(メタデータ) (2021-07-02T01:55:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。