論文の概要: Human Activity Recognition Using Self-Supervised Representations of
Wearable Data
- arxiv url: http://arxiv.org/abs/2304.14912v1
- Date: Wed, 26 Apr 2023 07:33:54 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-01 13:40:31.569439
- Title: Human Activity Recognition Using Self-Supervised Representations of
Wearable Data
- Title(参考訳): ウェアラブルデータの自己教師付き表現を用いたヒューマンアクティビティ認識
- Authors: Maximilien Burq and Niranjan Sridhar
- Abstract要約: HAR(Human Activity Recognition)のための正確なアルゴリズムの開発は、大規模な実世界のラベル付きデータセットの欠如によって妨げられている。
ここでは、トレーニング中に見えない実世界のデータセットで評価した場合、高い性能を有する6クラスHARモデルを開発する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Automated and accurate human activity recognition (HAR) using body-worn
sensors enables practical and cost efficient remote monitoring of Activity of
DailyLiving (ADL), which are shown to provide clinical insights across multiple
therapeutic areas. Development of accurate algorithms for human activity
recognition(HAR) is hindered by the lack of large real-world labeled datasets.
Furthermore, algorithms seldom work beyond the specific sensor on which they
are prototyped, prompting debate about whether accelerometer-based HAR is even
possible [Tong et al., 2020]. Here we develop a 6-class HAR model with strong
performance when evaluated on real-world datasets not seen during training. Our
model is based on a frozen self-supervised representation learned on a large
unlabeled dataset, combined with a shallow multi-layer perceptron with temporal
smoothing. The model obtains in-dataset state-of-the art performance on the
Capture24 dataset ($\kappa= 0.86$). Out-of-distribution (OOD) performance is
$\kappa = 0.7$, with both the representation and the perceptron models being
trained on data from a different sensor. This work represents a key step
towards device-agnostic HAR models, which can help contribute to increased
standardization of model evaluation in the HAR field.
- Abstract(参考訳): 身体運動センサを用いた人体行動認識(HAR)の自動化と高精度化により,複数治療領域にわたる臨床所見を提供するデイリーライビング(ADL)の実践的かつ費用対効果の高い遠隔監視が可能となった。
ヒトの活動認識(HAR)のための正確なアルゴリズムの開発は、大規模な実世界のラベル付きデータセットの欠如によって妨げられている。
さらに、アルゴリズムはプロトタイプとなる特定のセンサーを超えることはめったになく、加速度計ベースのHARが可能であるかどうかという議論を呼んだ[Tong et al., 2020]。
ここでは、トレーニング中に見えない実世界のデータセットで評価した場合、高い性能を有する6クラスHARモデルを開発する。
我々のモデルは、大規模なラベル付きデータセットで学習した凍結自己教師表現と、時間的平滑化を伴う浅い多層パーセプトロンに基づいている。
このモデルは、capture24データセット($\kappa= 0.86$)で、データ内の最先端のパフォーマンスを得る。
アウト・オブ・ディストリビューション(OOD)のパフォーマンスは$\kappa = 0.7$であり、表現とパーセプトロンモデルの両方が異なるセンサーのデータに基づいてトレーニングされている。
この研究は、デバイスに依存しないHARモデルへの重要なステップであり、HAR分野におけるモデル評価の標準化に寄与する。
関連論文リスト
- Scaling Wearable Foundation Models [54.93979158708164]
センサ基礎モデルのスケーリング特性を計算,データ,モデルサイズにわたって検討する。
最大4000万時間分の心拍数、心拍変動、心電図活動、加速度計、皮膚温度、および1分間のデータを用いて、私たちはLSMを作成します。
この結果から,LSMのスケーリング法則は,時間とセンサの両面において,計算や外挿などのタスクに対して確立されている。
論文 参考訳(メタデータ) (2024-10-17T15:08:21Z) - Temporal Action Localization for Inertial-based Human Activity Recognition [9.948823510429902]
ビデオベースのヒューマンアクティビティ認識(TAL)は、任意の長さのタイムラインでアクティビティセグメントをローカライズするセグメントベースの予測アプローチに従っている。
本論文は、オフラインとニアオンラインのHAR(Human Activity Recognition)における最先端のTALモデルの適用性を体系的に示す最初のものである。
時系列全体を解析することにより、TALモデルはよりコヒーレントなセグメントを生成し、全てのデータセットに対して高いNULLクラス精度を実現することができることを示す。
論文 参考訳(メタデータ) (2023-11-27T13:55:21Z) - Efficient Adaptive Human-Object Interaction Detection with
Concept-guided Memory [64.11870454160614]
概念誘導メモリ(ADA-CM)を用いた適応型HOI検出器を提案する。
ADA-CMには2つの操作モードがある。最初のモードでは、トレーニング不要のパラダイムで新しいパラメータを学習することなくチューニングできる。
提案手法は, HICO-DET と V-COCO のデータセットに対して, より少ないトレーニング時間で, 最新技術による競合的な結果を得る。
論文 参考訳(メタデータ) (2023-09-07T13:10:06Z) - ALP: Action-Aware Embodied Learning for Perception [60.64801970249279]
認知のための行動認識型身体学習(ALP)について紹介する。
ALPは、強化学習ポリシーと逆ダイナミクス予測目標を最適化することにより、行動情報を表現学習に組み込む。
ALPは、複数の下流認識タスクにおいて、既存のベースラインよりも優れていることを示す。
論文 参考訳(メタデータ) (2023-06-16T21:51:04Z) - Value function estimation using conditional diffusion models for control [62.27184818047923]
拡散値関数(DVF)と呼ばれる単純なアルゴリズムを提案する。
拡散モデルを用いて環境-ロボット相互作用の連成多段階モデルを学ぶ。
本稿では,DVFを用いて複数のコントローラの状態を効率よく把握する方法を示す。
論文 参考訳(メタデータ) (2023-06-09T18:40:55Z) - Unsupervised Statistical Feature-Guided Diffusion Model for Sensor-based Human Activity Recognition [3.2319909486685354]
ウェアラブルセンサーによる人間の活動認識の進歩を支えている重要な問題は、多様なラベル付きトレーニングデータの利用不可能である。
本研究では,ウェアラブルセンサを用いた人間行動認識に特化して最適化された,教師なしの統計的特徴誘導拡散モデルを提案する。
平均,標準偏差,Zスコア,歪などの統計情報に拡散モデルを適用し,多種多様な合成センサデータを生成する。
論文 参考訳(メタデータ) (2023-05-30T15:12:59Z) - Dataset Bias in Human Activity Recognition [57.91018542715725]
このコントリビューションは、トレーニングデータを統計的にキュレートし、人間の身体的特性がHARのパフォーマンスにどの程度影響するかを評価する。
時系列HARのセンサ,アクティビティ,記録の異なる2つのHARデータセット上で,最先端の畳み込みニューラルネットワークの性能を評価する。
論文 参考訳(メタデータ) (2023-01-19T12:33:50Z) - Human Activity Recognition on wrist-worn accelerometers using
self-supervised neural networks [0.0]
日常生活活動の指標 (ADL) は, 健康の指標として重要であるが, 生体内測定は困難である。
本稿では,加速度センサデータの頑健な表現をデバイスや対象に対して一般化するための自己教師付き学習パラダイムを提案する。
また,連続した実生活データに対して,有意な活動のセグメントを同定し,HARの精度を高めるセグメンテーションアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-12-22T23:35:20Z) - SelfHAR: Improving Human Activity Recognition through Self-training with
Unlabeled Data [9.270269467155547]
SelfHARは、ラベルなしデータセットを利用して小さなラベル付きデータセットを補完する半教師付きモデルである。
提案手法は教師による自己学習と,ラベル付きデータセットとラベル付きデータセットの知識を融合する。
SelfHARはデータ効率が高く、教師付きアプローチの10倍のラベル付きデータを使用して、同様のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2021-02-11T15:40:35Z) - Contrastive Predictive Coding for Human Activity Recognition [5.766384728949437]
本研究では,センサデータストリームの長期的時間構造をキャプチャする人間行動認識にContrastive Predictive Codingフレームワークを導入する。
CPCベースの事前学習は自己管理され、その結果得られた表現は標準のアクティビティチェーンに統合できる。
少量のラベル付きトレーニングデータしか利用できない場合、認識性能が大幅に向上します。
論文 参考訳(メタデータ) (2020-12-09T21:44:36Z) - Omni-supervised Facial Expression Recognition via Distilled Data [120.11782405714234]
ネットワークトレーニングにおいて,信頼度の高いサンプルを多量のラベルのないデータで活用するためのオムニ教師付き学習を提案する。
我々は,新しいデータセットが学習したFERモデルの能力を大幅に向上させることができることを実験的に検証した。
そこで本研究では,生成したデータセットを複数のクラスワイド画像に圧縮するために,データセット蒸留戦略を適用することを提案する。
論文 参考訳(メタデータ) (2020-05-18T09:36:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。