論文の概要: Temporal Action Localization for Inertial-based Human Activity Recognition
- arxiv url: http://arxiv.org/abs/2311.15831v2
- Date: Mon, 14 Oct 2024 12:33:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-15 17:54:04.792021
- Title: Temporal Action Localization for Inertial-based Human Activity Recognition
- Title(参考訳): 慣性に基づく人間活動認識のための時間的行動定位法
- Authors: Marius Bock, Michael Moeller, Kristof Van Laerhoven,
- Abstract要約: ビデオベースのヒューマンアクティビティ認識(TAL)は、任意の長さのタイムラインでアクティビティセグメントをローカライズするセグメントベースの予測アプローチに従っている。
本論文は、オフラインとニアオンラインのHAR(Human Activity Recognition)における最先端のTALモデルの適用性を体系的に示す最初のものである。
時系列全体を解析することにより、TALモデルはよりコヒーレントなセグメントを生成し、全てのデータセットに対して高いNULLクラス精度を実現することができることを示す。
- 参考スコア(独自算出の注目度): 9.948823510429902
- License:
- Abstract: As of today, state-of-the-art activity recognition from wearable sensors relies on algorithms being trained to classify fixed windows of data. In contrast, video-based Human Activity Recognition, known as Temporal Action Localization (TAL), has followed a segment-based prediction approach, localizing activity segments in a timeline of arbitrary length. This paper is the first to systematically demonstrate the applicability of state-of-the-art TAL models for both offline and near-online Human Activity Recognition (HAR) using raw inertial data as well as pre-extracted latent features as input. Offline prediction results show that TAL models are able to outperform popular inertial models on a multitude of HAR benchmark datasets, with improvements reaching as much as 26% in F1-score. We show that by analyzing timelines as a whole, TAL models can produce more coherent segments and achieve higher NULL-class accuracy across all datasets. We demonstrate that TAL is less suited for the immediate classification of small-sized windows of data, yet offers an interesting perspective on inertial-based HAR -- alleviating the need for fixed-size windows and enabling algorithms to recognize activities of arbitrary length. With design choices and training concepts yet to be explored, we argue that TAL architectures could be of significant value to the inertial-based HAR community. The code and data download to reproduce experiments is publicly available via github.com/mariusbock/tal_for_har.
- Abstract(参考訳): 今日現在、ウェアラブルセンサーによる最先端のアクティビティ認識は、固定されたデータのウィンドウを分類するアルゴリズムに依存している。
対照的に、ビデオベースのヒューマンアクティビティ認識は、時間的行動局所化(TAL)と呼ばれ、任意の長さのタイムラインでアクティビティセグメントをローカライズするセグメントベースの予測アプローチに従っている。
本論文は,実慣性データと事前抽出された潜伏特徴を入力として用いて,オフラインおよび準オンラインの人間活動認識(HAR)における最先端のTALモデルの適用性を体系的に実証した最初のものである。
オフライン予測の結果から、TALモデルは、複数のHARベンチマークデータセットで一般的な慣性モデルよりも優れており、F1スコアで最大26%の改善が達成されている。
時系列全体を解析することにより、TALモデルはよりコヒーレントなセグメントを生成し、全てのデータセットに対して高いNULLクラス精度を実現することができることを示す。
しかし、慣性ベースのHAR -- 固定サイズのウィンドウの必要性を軽減し、アルゴリズムが任意の長さのアクティビティを認識できるようにする -- に関して興味深い視点を提供する。
設計の選択とトレーニングの概念はまだ検討されていないので、TALアーキテクチャは慣性ベースのHARコミュニティにとって重要な意味を持つ可能性がある、と私たちは主張する。
実験を再現するためのコードとデータはgithub.com/mariusbock/tal_for_harで公開されている。
関連論文リスト
- DyG-Mamba: Continuous State Space Modeling on Dynamic Graphs [59.434893231950205]
動的グラフ学習は、現実世界のシステムにおける進化の法則を明らかにすることを目的としている。
動的グラフ学習のための新しい連続状態空間モデルDyG-Mambaを提案する。
我々はDyG-Mambaがほとんどのデータセットで最先端のパフォーマンスを達成することを示す。
論文 参考訳(メタデータ) (2024-08-13T15:21:46Z) - Generative Active Learning for Long-tailed Instance Segmentation [55.66158205855948]
キャッシュ勾配に基づいて生成したデータの寄与を推定する新しいアルゴリズムであるBSGALを提案する。
実験により,BSGALはベースラインアプローチより優れ,長い尾のセグメンテーションの性能が効果的に向上することが示された。
論文 参考訳(メタデータ) (2024-06-04T15:57:43Z) - HARMamba: Efficient and Lightweight Wearable Sensor Human Activity Recognition Based on Bidirectional Mamba [7.412537185607976]
ウェアラブルセンサーによる人間の活動認識(HAR)は、活動知覚において重要な研究領域である。
HARMambaは、選択的な双方向状態空間モデルとハードウェア対応設計を組み合わせた、革新的な軽量で多用途なHARアーキテクチャである。
HarMambaは現代の最先端フレームワークより優れており、計算とメモリの要求を大幅に削減し、同等またはより良い精度を提供する。
論文 参考訳(メタデータ) (2024-03-29T13:57:46Z) - Towards Learning Discrete Representations via Self-Supervision for
Wearables-Based Human Activity Recognition [7.086647707011785]
ウェアラブルコンピューティングにおけるヒューマンアクティビティ認識(HAR)は、通常、センサーデータの直接処理に基づいている。
ウェアラブルアプリケーションへのベクトル量子化(VQ)の最近の進歩により、センサデータの短いスパンとベクトルのコードブックのマッピングを直接学習できるようになりました。
この研究は、離散表現がいかに効果的に導出できるかを示すための概念実証を示す。
論文 参考訳(メタデータ) (2023-06-01T19:49:43Z) - Human Activity Recognition Using Self-Supervised Representations of
Wearable Data [0.0]
HAR(Human Activity Recognition)のための正確なアルゴリズムの開発は、大規模な実世界のラベル付きデータセットの欠如によって妨げられている。
ここでは、トレーニング中に見えない実世界のデータセットで評価した場合、高い性能を有する6クラスHARモデルを開発する。
論文 参考訳(メタデータ) (2023-04-26T07:33:54Z) - Reinforcement Learning from Passive Data via Latent Intentions [86.4969514480008]
我々は、下流RLを加速する機能を学ぶために、受動的データが引き続き使用できることを示す。
我々のアプローチは、意図をモデル化することで受動的データから学習する。
実験では、クロス・エボディメント・ビデオデータやYouTubeビデオなど、さまざまな形式の受動的データから学習できることを実証した。
論文 参考訳(メタデータ) (2023-04-10T17:59:05Z) - Adaptive Local-Component-aware Graph Convolutional Network for One-shot
Skeleton-based Action Recognition [54.23513799338309]
骨格に基づく行動認識のための適応的局所成分認識グラフ畳み込みネットワークを提案する。
我々の手法はグローバルな埋め込みよりも強力な表現を提供し、我々のモデルが最先端に到達するのに役立ちます。
論文 参考訳(メタデータ) (2022-09-21T02:33:07Z) - Learning from Temporal Spatial Cubism for Cross-Dataset Skeleton-based
Action Recognition [88.34182299496074]
アクションラベルはソースデータセットでのみ利用可能だが、トレーニング段階のターゲットデータセットでは利用できない。
我々は,2つの骨格に基づく行動データセット間の領域シフトを低減するために,自己スーパービジョン方式を利用する。
時間的セグメントや人体部分のセグメンテーションとパーフォーミングにより、我々は2つの自己教師あり学習分類タスクを設計する。
論文 参考訳(メタデータ) (2022-07-17T07:05:39Z) - Beyond the Gates of Euclidean Space: Temporal-Discrimination-Fusions and
Attention-based Graph Neural Network for Human Activity Recognition [5.600003119721707]
ウェアラブルデバイスによるヒューマンアクティビティ認識(HAR)は、フィットネストラッキング、ウェルネススクリーニング、生活支援など多くの応用により、大きな関心を集めている。
従来のディープラーニング(DL)は、HARドメインのアートパフォーマンスの状態を規定している。
提案手法はグラフニューラルネットワーク(GNN)を用いて,入力表現を構造化し,サンプル間の関係性を利用する手法である。
論文 参考訳(メタデータ) (2022-06-10T03:04:23Z) - Omni-supervised Facial Expression Recognition via Distilled Data [120.11782405714234]
ネットワークトレーニングにおいて,信頼度の高いサンプルを多量のラベルのないデータで活用するためのオムニ教師付き学習を提案する。
我々は,新しいデータセットが学習したFERモデルの能力を大幅に向上させることができることを実験的に検証した。
そこで本研究では,生成したデータセットを複数のクラスワイド画像に圧縮するために,データセット蒸留戦略を適用することを提案する。
論文 参考訳(メタデータ) (2020-05-18T09:36:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。