Active Reinforcement Learning for Personalized Stress Monitoring in
Everyday Settings
- URL: http://arxiv.org/abs/2305.00111v1
- Date: Fri, 28 Apr 2023 22:09:19 GMT
- Title: Active Reinforcement Learning for Personalized Stress Monitoring in
Everyday Settings
- Authors: Ali Tazarv, Sina Labbaf, Amir Rahmani, Nikil Dutt, Marco Levorato
- Abstract summary: In this paper, we consider a fine-grain stress detection problem based on wearable sensors targeting everyday settings.
We develop a multilayered sensor-edge-cloud platform to periodically capture physiological signals and process them in real-time.
We show that the context-aware active learning technique we propose achieves a desirable detection performance using 88% and 32% fewer queries from users.
- Score: 4.4353357514621745
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Most existing sensor-based monitoring frameworks presume that a large
available labeled dataset is processed to train accurate detection models.
However, in settings where personalization is necessary at deployment time to
fine-tune the model, a person-specific dataset needs to be collected online by
interacting with the users. Optimizing the collection of labels in such phase
is instrumental to impose a tolerable burden on the users while maximizing
personal improvement. In this paper, we consider a fine-grain stress detection
problem based on wearable sensors targeting everyday settings, and propose a
novel context-aware active learning strategy capable of jointly maximizing the
meaningfulness of the signal samples we request the user to label and the
response rate. We develop a multilayered sensor-edge-cloud platform to
periodically capture physiological signals and process them in real-time, as
well as to collect labels and retrain the detection model. We collect a large
dataset and show that the context-aware active learning technique we propose
achieves a desirable detection performance using 88\% and 32\% fewer queries
from users compared to a randomized strategy and a traditional active learning
strategy, respectively.
Related papers
- A CLIP-Powered Framework for Robust and Generalizable Data Selection [51.46695086779598]
Real-world datasets often contain redundant and noisy data, imposing a negative impact on training efficiency and model performance.
Data selection has shown promise in identifying the most representative samples from the entire dataset.
We propose a novel CLIP-powered data selection framework that leverages multimodal information for more robust and generalizable sample selection.
arXiv Detail & Related papers (2024-10-15T03:00:58Z) - TrajSSL: Trajectory-Enhanced Semi-Supervised 3D Object Detection [59.498894868956306]
Pseudo-labeling approaches to semi-supervised learning adopt a teacher-student framework.
We leverage pre-trained motion-forecasting models to generate object trajectories on pseudo-labeled data.
Our approach improves pseudo-label quality in two distinct manners.
arXiv Detail & Related papers (2024-09-17T05:35:00Z) - Downstream-Pretext Domain Knowledge Traceback for Active Learning [138.02530777915362]
We propose a downstream-pretext domain knowledge traceback (DOKT) method that traces the data interactions of downstream knowledge and pre-training guidance.
DOKT consists of a traceback diversity indicator and a domain-based uncertainty estimator.
Experiments conducted on ten datasets show that our model outperforms other state-of-the-art methods.
arXiv Detail & Related papers (2024-07-20T01:34:13Z) - Enhancing Performance and User Engagement in Everyday Stress Monitoring: A Context-Aware Active Reinforcement Learning Approach [4.132425356039815]
This paper introduces a novel context-aware active learning (RL) algorithm for enhanced stress detection using smartwatches and contextual data from smartphones.
Our approach dynamically selects optimal times for deploying EMAs, utilizing the user's immediate context to maximize label accuracy and minimize intrusiveness.
This research marks a significant move towards personalized, context-driven real-time stress monitoring methods.
arXiv Detail & Related papers (2024-07-11T06:33:11Z) - Stochastic Amortization: A Unified Approach to Accelerate Feature and Data Attribution [62.71425232332837]
We show that training amortized models with noisy labels is inexpensive and surprisingly effective.
This approach significantly accelerates several feature attribution and data valuation methods, often yielding an order of magnitude speedup over existing approaches.
arXiv Detail & Related papers (2024-01-29T03:42:37Z) - Large-scale Fully-Unsupervised Re-Identification [78.47108158030213]
We propose two strategies to learn from large-scale unlabeled data.
The first strategy performs a local neighborhood sampling to reduce the dataset size in each without violating neighborhood relationships.
A second strategy leverages a novel Re-Ranking technique, which has a lower time upper bound complexity and reduces the memory complexity from O(n2) to O(kn) with k n.
arXiv Detail & Related papers (2023-07-26T16:19:19Z) - Refining the Optimization Target for Automatic Univariate Time Series
Anomaly Detection in Monitoring Services [7.950139316901604]
This paper proposes a comprehensive framework for automatic parameter optimization in time series anomaly detection models.
The framework introduces three optimization targets: prediction score, shape score, and sensitivity score, which can be easily adapted to different model backbones.
The proposed framework has been successfully applied online for over six months, serving more than 50,000 time series every minute.
arXiv Detail & Related papers (2023-07-20T07:33:36Z) - Stream-based active learning with linear models [0.7734726150561089]
In production, instead of performing random inspections to obtain product information, labels are collected by evaluating the information content of the unlabeled data.
We propose a new strategy for the stream-based scenario, where instances are sequentially offered to the learner.
The iterative aspect of the decision-making process is tackled by setting a threshold on the informativeness of the unlabeled data points.
arXiv Detail & Related papers (2022-07-20T13:15:23Z) - Data Collection and Labeling of Real-Time IoT-Enabled Bio-Signals in
Everyday Settings for Mental Health Improvement [6.7377504888630675]
Real-time physiological data collection and analysis play a central role in modern well-being applications.
This paper builds a system for the real-time collection and analysis of photoplethysmogram, acceleration, gyroscope, and gravity data from a wearable sensor.
arXiv Detail & Related papers (2021-08-02T20:56:48Z) - Graph-based Reinforcement Learning for Active Learning in Real Time: An
Application in Modeling River Networks [2.8631830115500394]
We develop a real-time active learning method that uses the spatial and temporal contextual information to select representative query samples in a reinforcement learning framework.
We demonstrate the effectiveness of the proposed method by predicting streamflow and water temperature in the Delaware River Basin given a limited budget for collecting labeled data.
arXiv Detail & Related papers (2020-10-27T02:19:40Z) - Omni-supervised Facial Expression Recognition via Distilled Data [120.11782405714234]
We propose omni-supervised learning to exploit reliable samples in a large amount of unlabeled data for network training.
We experimentally verify that the new dataset can significantly improve the ability of the learned FER model.
To tackle this, we propose to apply a dataset distillation strategy to compress the created dataset into several informative class-wise images.
arXiv Detail & Related papers (2020-05-18T09:36:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.