Enhancing Performance and User Engagement in Everyday Stress Monitoring: A Context-Aware Active Reinforcement Learning Approach
- URL: http://arxiv.org/abs/2407.08215v1
- Date: Thu, 11 Jul 2024 06:33:11 GMT
- Title: Enhancing Performance and User Engagement in Everyday Stress Monitoring: A Context-Aware Active Reinforcement Learning Approach
- Authors: Seyed Amir Hossein Aqajari, Ziyu Wang, Ali Tazarv, Sina Labbaf, Salar Jafarlou, Brenda Nguyen, Nikil Dutt, Marco Levorato, Amir M. Rahmani,
- Abstract summary: This paper introduces a novel context-aware active learning (RL) algorithm for enhanced stress detection using smartwatches and contextual data from smartphones.
Our approach dynamically selects optimal times for deploying EMAs, utilizing the user's immediate context to maximize label accuracy and minimize intrusiveness.
This research marks a significant move towards personalized, context-driven real-time stress monitoring methods.
- Score: 4.132425356039815
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In today's fast-paced world, accurately monitoring stress levels is crucial. Sensor-based stress monitoring systems often need large datasets for training effective models. However, individual-specific models are necessary for personalized and interactive scenarios. Traditional methods like Ecological Momentary Assessments (EMAs) assess stress but struggle with efficient data collection without burdening users. The challenge is to timely send EMAs, especially during stress, balancing monitoring efficiency and user convenience. This paper introduces a novel context-aware active reinforcement learning (RL) algorithm for enhanced stress detection using Photoplethysmography (PPG) data from smartwatches and contextual data from smartphones. Our approach dynamically selects optimal times for deploying EMAs, utilizing the user's immediate context to maximize label accuracy and minimize intrusiveness. Initially, the study was executed in an offline environment to refine the label collection process, aiming to increase accuracy while reducing user burden. Later, we integrated a real-time label collection mechanism, transitioning to an online methodology. This shift resulted in an 11% improvement in stress detection efficiency. Incorporating contextual data improved model accuracy by 4%. Personalization studies indicated a 10% enhancement in AUC-ROC scores, demonstrating better stress level differentiation. This research marks a significant move towards personalized, context-driven real-time stress monitoring methods.
Related papers
- Adaptive Rentention & Correction for Continual Learning [114.5656325514408]
A common problem in continual learning is the classification layer's bias towards the most recent task.
We name our approach Adaptive Retention & Correction (ARC)
ARC achieves an average performance increase of 2.7% and 2.6% on the CIFAR-100 and Imagenet-R datasets.
arXiv Detail & Related papers (2024-05-23T08:43:09Z) - Context-Aware Stress Monitoring using Wearable and Mobile Technologies
in Everyday Settings [2.650926942973848]
We present a monitoring system that objectively tracks daily stress levels by utilizing both physiological and contextual data.
We propose a three-tier Internet-of-Things-based system architecture to address the challenges.
arXiv Detail & Related papers (2023-12-14T19:16:11Z) - PREM: A Simple Yet Effective Approach for Node-Level Graph Anomaly
Detection [65.24854366973794]
Node-level graph anomaly detection (GAD) plays a critical role in identifying anomalous nodes from graph-structured data in domains such as medicine, social networks, and e-commerce.
We introduce a simple method termed PREprocessing and Matching (PREM for short) to improve the efficiency of GAD.
Our approach streamlines GAD, reducing time and memory consumption while maintaining powerful anomaly detection capabilities.
arXiv Detail & Related papers (2023-10-18T02:59:57Z) - Personalization of Stress Mobile Sensing using Self-Supervised Learning [1.7598252755538808]
Stress is widely recognized as a major contributor to a variety of health issues.
Real-time stress prediction can enable digital interventions to immediately react at the onset of stress, helping to avoid many psychological and physiological symptoms such as heart rhythm irregularities.
However, major challenges with the prediction of stress using machine learning include the subjectivity and sparseness of the labels, a large feature space, relatively few labels, and a complex nonlinear and subjective relationship between the features and outcomes.
arXiv Detail & Related papers (2023-08-04T22:26:33Z) - ALP: Action-Aware Embodied Learning for Perception [60.64801970249279]
We introduce Action-Aware Embodied Learning for Perception (ALP)
ALP incorporates action information into representation learning through a combination of optimizing a reinforcement learning policy and an inverse dynamics prediction objective.
We show that ALP outperforms existing baselines in several downstream perception tasks.
arXiv Detail & Related papers (2023-06-16T21:51:04Z) - Active Reinforcement Learning for Personalized Stress Monitoring in
Everyday Settings [4.4353357514621745]
In this paper, we consider a fine-grain stress detection problem based on wearable sensors targeting everyday settings.
We develop a multilayered sensor-edge-cloud platform to periodically capture physiological signals and process them in real-time.
We show that the context-aware active learning technique we propose achieves a desirable detection performance using 88% and 32% fewer queries from users.
arXiv Detail & Related papers (2023-04-28T22:09:19Z) - Improved Speech Emotion Recognition using Transfer Learning and
Spectrogram Augmentation [56.264157127549446]
Speech emotion recognition (SER) is a challenging task that plays a crucial role in natural human-computer interaction.
One of the main challenges in SER is data scarcity.
We propose a transfer learning strategy combined with spectrogram augmentation.
arXiv Detail & Related papers (2021-08-05T10:39:39Z) - Personalized Stress Monitoring using Wearable Sensors in Everyday
Settings [9.621481727547215]
We explore objective prediction of stress levels in everyday settings based on heart rate (HR) and heart rate variability (HRV)
We present a layered system architecture for personalized stress monitoring that supports a tunable collection of data samples for labeling, and present a method for selecting informative samples from the stream of real-time data for labeling.
arXiv Detail & Related papers (2021-07-31T04:15:15Z) - Towards Reducing Labeling Cost in Deep Object Detection [61.010693873330446]
We propose a unified framework for active learning, that considers both the uncertainty and the robustness of the detector.
Our method is able to pseudo-label the very confident predictions, suppressing a potential distribution drift.
arXiv Detail & Related papers (2021-06-22T16:53:09Z) - Learning to Continuously Optimize Wireless Resource in a Dynamic
Environment: A Bilevel Optimization Perspective [52.497514255040514]
This work develops a new approach that enables data-driven methods to continuously learn and optimize resource allocation strategies in a dynamic environment.
We propose to build the notion of continual learning into wireless system design, so that the learning model can incrementally adapt to the new episodes.
Our design is based on a novel bilevel optimization formulation which ensures certain fairness" across different data samples.
arXiv Detail & Related papers (2021-05-03T07:23:39Z) - Bayesian Active Learning for Wearable Stress and Affect Detection [0.7106986689736827]
Stress detection using on-device deep learning algorithms has been on the rise owing to advancements in pervasive computing.
In this paper, we propose a framework with capabilities to represent model uncertainties through approximations in Bayesian Neural Networks.
Our proposed framework achieves a considerable efficiency boost during inference, with a substantially low number of acquired pool points.
arXiv Detail & Related papers (2020-12-04T16:19:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.