論文の概要: Visualizing chest X-ray dataset biases using GANs
- arxiv url: http://arxiv.org/abs/2305.00147v1
- Date: Sat, 29 Apr 2023 01:39:08 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-02 16:49:04.877486
- Title: Visualizing chest X-ray dataset biases using GANs
- Title(参考訳): GANを用いた胸部X線データセットバイアスの可視化
- Authors: Hao Liang, Kevin Ni, Guha Balakrishnan
- Abstract要約: 近年の研究では、様々な胸部X線データセットの画像には、人種や性別といった保護された人口特性と強く相関する視覚的特徴が含まれていることが示されている。
これらの要因のいくつかは、臨床予測のために下流アルゴリズムによって利用される可能性があるため、この発見は公正性の問題を提起する。
本研究では,2つの層群に属するX線に最も異なる特徴を可視化するために,GAN(Generative Adversarial Network)を用いたフレームワークを提案する。
- 参考スコア(独自算出の注目度): 8.042682839888982
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent work demonstrates that images from various chest X-ray datasets
contain visual features that are strongly correlated with protected demographic
attributes like race and gender. This finding raises issues of fairness, since
some of these factors may be used by downstream algorithms for clinical
predictions. In this work, we propose a framework, using generative adversarial
networks (GANs), to visualize what features are most different between X-rays
belonging to two demographic subgroups.
- Abstract(参考訳): 最近の研究では、様々な胸部X線データセットの画像には、人種や性別といった保護された人口特性と強く相関する視覚的特徴が含まれていることが示されている。
これらの要因のいくつかは臨床予測のために下流アルゴリズムによって使用される可能性があるため、この発見は公平性の問題を提起する。
本研究では,2つの層群に属するX線に最も異なる特徴を可視化するために,GAN(Generative Adversarial Network)を用いたフレームワークを提案する。
関連論文リスト
- Vision-Language Generative Model for View-Specific Chest X-ray Generation [18.347723213970696]
ViewXGenは、フロントビュー胸部X線を生成する既存のメソッドの制限を克服するように設計されている。
提案手法は, データセット内の多様な視線位置を考慮し, 特定の視線を用いた胸部X線の生成を可能にする。
論文 参考訳(メタデータ) (2023-02-23T17:13:25Z) - Learning disentangled representations for explainable chest X-ray
classification using Dirichlet VAEs [68.73427163074015]
本研究では,胸部X線像の非絡み合った潜在表現の学習にDirVAE(Dirichlet Variational Autoencoder)を用いることを検討した。
DirVAEモデルにより学習された多モード潜在表現の予測能力について,補助的多ラベル分類タスクの実装により検討した。
論文 参考訳(メタデータ) (2023-02-06T18:10:08Z) - Computer-aided Tuberculosis Diagnosis with Attribute Reasoning
Assistance [58.01014026139231]
新しい大規模結核(TB)胸部X線データセット(TBX-Att)を提案する。
属性情報を利用してTBの分類とローカライズを行うための属性支援弱教師付きフレームワークを構築した。
提案モデルはTBX-Attデータセットで評価され,今後の研究の確かなベースラインとして機能する。
論文 参考訳(メタデータ) (2022-07-01T07:50:35Z) - Contrastive Attention for Automatic Chest X-ray Report Generation [124.60087367316531]
ほとんどの場合、正常領域が胸部X線像全体を支配し、これらの正常領域の対応する記述が最終報告を支配している。
本稿では,現在の入力画像と通常の画像を比較してコントラスト情報を抽出するContrastive Attention(CA)モデルを提案する。
2つの公開データセットで最先端の結果を得る。
論文 参考訳(メタデータ) (2021-06-13T11:20:31Z) - Cross-Modal Contrastive Learning for Abnormality Classification and
Localization in Chest X-rays with Radiomics using a Feedback Loop [63.81818077092879]
医療画像のためのエンドツーエンドのセミスーパーバイスドクロスモーダルコントラスト学習フレームワークを提案する。
まず、胸部X線を分類し、画像特徴を生成するために画像エンコーダを適用する。
放射能の特徴は別の専用エンコーダを通過し、同じ胸部x線から生成された画像の特徴の正のサンプルとして機能する。
論文 参考訳(メタデータ) (2021-04-11T09:16:29Z) - Learning Invariant Feature Representation to Improve Generalization
across Chest X-ray Datasets [55.06983249986729]
我々は、トレーニングデータと同じデータセットでテストすると、ディープラーニングモデルが、異なるソースからデータセットでテストされると、パフォーマンスが低下し始めることを示す。
対戦型トレーニング戦略を用いることで、ネットワークはソース不変表現を学習せざるを得ないことを示す。
論文 参考訳(メタデータ) (2020-08-04T07:41:15Z) - Weakly-Supervised Segmentation for Disease Localization in Chest X-Ray
Images [0.0]
医用胸部X線画像のセマンティックセグメンテーションに対する新しいアプローチを提案する。
本手法は肺と胸壁の間の異常な空気量を検出するための胸部X線検査に適用可能である。
論文 参考訳(メタデータ) (2020-07-01T20:48:35Z) - Deep Mining External Imperfect Data for Chest X-ray Disease Screening [57.40329813850719]
我々は、外部のCXRデータセットを組み込むことで、不完全なトレーニングデータにつながると論じ、課題を提起する。
本研究は,多ラベル病分類問題を重み付き独立二分課題として分類する。
我々のフレームワークは、ドメインとラベルの相違を同時にモデル化し、対処し、優れた知識マイニング能力を実現する。
論文 参考訳(メタデータ) (2020-06-06T06:48:40Z) - CheXclusion: Fairness gaps in deep chest X-ray classifiers [4.656202572362684]
本研究では,最先端のディープラーニング分類器が保護属性に対してどの程度偏りがあるかを検討する。
我々は畳み込みニューラルネットワークをトレーニングし、14の診断ラベルを3つの有名な公共胸部X線データセットで予測する。
TPRの相違はサブグループの比例性疾患の重荷と有意な相関は認められなかった。
論文 参考訳(メタデータ) (2020-02-14T22:08:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。