論文の概要: Vision-Language Generative Model for View-Specific Chest X-ray Generation
- arxiv url: http://arxiv.org/abs/2302.12172v5
- Date: Tue, 30 Apr 2024 00:52:24 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-01 20:17:07.649544
- Title: Vision-Language Generative Model for View-Specific Chest X-ray Generation
- Title(参考訳): 視野特異的胸部X線生成のための視覚言語生成モデル
- Authors: Hyungyung Lee, Da Young Lee, Wonjae Kim, Jin-Hwa Kim, Tackeun Kim, Jihang Kim, Leonard Sunwoo, Edward Choi,
- Abstract要約: ViewXGenは、フロントビュー胸部X線を生成する既存のメソッドの制限を克服するように設計されている。
提案手法は, データセット内の多様な視線位置を考慮し, 特定の視線を用いた胸部X線の生成を可能にする。
- 参考スコア(独自算出の注目度): 18.347723213970696
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Synthetic medical data generation has opened up new possibilities in the healthcare domain, offering a powerful tool for simulating clinical scenarios, enhancing diagnostic and treatment quality, gaining granular medical knowledge, and accelerating the development of unbiased algorithms. In this context, we present a novel approach called ViewXGen, designed to overcome the limitations of existing methods that rely on general domain pipelines using only radiology reports to generate frontal-view chest X-rays. Our approach takes into consideration the diverse view positions found in the dataset, enabling the generation of chest X-rays with specific views, which marks a significant advancement in the field. To achieve this, we introduce a set of specially designed tokens for each view position, tailoring the generation process to the user's preferences. Furthermore, we leverage multi-view chest X-rays as input, incorporating valuable information from different views within the same study. This integration rectifies potential errors and contributes to faithfully capturing abnormal findings in chest X-ray generation. To validate the effectiveness of our approach, we conducted statistical analyses, evaluating its performance in a clinical efficacy metric on the MIMIC-CXR dataset. Also, human evaluation demonstrates the remarkable capabilities of ViewXGen, particularly in producing realistic view-specific X-rays that closely resemble the original images.
- Abstract(参考訳): 合成医療データ生成は、医療領域における新たな可能性を開き、臨床シナリオをシミュレートし、診断と治療の質を高め、詳細な医療知識を獲得し、偏見のないアルゴリズムの開発を加速する強力なツールを提供している。
そこで本研究では,放射線学報告のみを用いて前頭側胸部X線を生成する,一般領域パイプラインに依存した既存手法の限界を克服する,ViewXGenという新しい手法を提案する。
提案手法は,データセット内の多様な視線位置を考慮し,特定の視線を用いた胸部X線の生成を可能にした。
これを実現するために,各ビュー位置ごとに特別に設計されたトークンのセットを導入し,ユーザの好みに合わせて生成プロセスを調整した。
さらに,複数視点の胸部X線を入力として利用し,異なる視点からの貴重な情報を同じ研究に取り入れた。
この統合は潜在的なエラーを修正し、胸部X線発生の異常な発見を忠実に捉えるのに寄与する。
提案手法の有効性を検証するため,MIMIC-CXRデータセットを用いた臨床効果指標を用いて統計的解析を行い,その性能評価を行った。
また、人間の評価はビューXGenの顕著な能力を示し、特に元の画像によく似たリアルなビュー固有のX線を生成する。
関連論文リスト
- Towards Predicting Temporal Changes in a Patient's Chest X-ray Images based on Electronic Health Records [9.398163873685798]
本稿では,従来のCXRとその後の医療イベントを統合することで,将来のCXR画像を予測する新しいフレームワークであるEHRXDiffを提案する。
我々のフレームワークは、時間的変化を捉えた高品質で現実的な未来像を生成することを実証する。
これは、医療分野における患者のモニタリングと治療計画に有用な洞察を与える可能性がある。
論文 参考訳(メタデータ) (2024-09-11T04:49:44Z) - Structural Entities Extraction and Patient Indications Incorporation for Chest X-ray Report Generation [10.46031380503486]
胸部X線レポート生成のための新しい方法である textbfStructural textbfEntities 抽出法と textbfIncorporation (SEI) を考案した。
我々は、レポートにおけるプレゼンテーションスタイルの語彙を排除するために、構造エンティティ抽出(SEE)アプローチを採用する。
我々は,X線画像,類似の歴史的症例,患者固有の指標からの情報を統合するクロスモーダル融合ネットワークを提案する。
論文 参考訳(メタデータ) (2024-05-23T01:29:47Z) - MLVICX: Multi-Level Variance-Covariance Exploration for Chest X-ray Self-Supervised Representation Learning [6.4136876268620115]
MLVICXは、胸部X線画像からの埋め込みの形でリッチな表現をキャプチャするアプローチである。
自己教師付き胸部X線表現学習におけるMLVICXの性能を示す。
論文 参考訳(メタデータ) (2024-03-18T06:19:37Z) - Act Like a Radiologist: Radiology Report Generation across Anatomical Regions [50.13206214694885]
X-RGenは6つの解剖学的領域にわたる放射線学者によるレポート生成フレームワークである。
X-RGenでは、ヒトの放射線学者の行動を模倣し、これらを4つの主要な段階に分解する。
画像エンコーダの認識能力は,各領域にまたがる画像やレポートを分析して向上する。
論文 参考訳(メタデータ) (2023-05-26T07:12:35Z) - Generative Residual Attention Network for Disease Detection [51.60842580044539]
本稿では, 条件付き生成逆学習を用いたX線疾患発生のための新しいアプローチを提案する。
我々は,患者の身元を保存しながら,対象領域に対応する放射線画像を生成する。
次に、ターゲット領域で生成されたX線画像を用いてトレーニングを増強し、検出性能を向上させる。
論文 参考訳(メタデータ) (2021-10-25T14:15:57Z) - Cross-Modal Contrastive Learning for Abnormality Classification and
Localization in Chest X-rays with Radiomics using a Feedback Loop [63.81818077092879]
医療画像のためのエンドツーエンドのセミスーパーバイスドクロスモーダルコントラスト学習フレームワークを提案する。
まず、胸部X線を分類し、画像特徴を生成するために画像エンコーダを適用する。
放射能の特徴は別の専用エンコーダを通過し、同じ胸部x線から生成された画像の特徴の正のサンプルとして機能する。
論文 参考訳(メタデータ) (2021-04-11T09:16:29Z) - Variational Knowledge Distillation for Disease Classification in Chest
X-Rays [102.04931207504173]
我々は,X線に基づく疾患分類のための新しい確率的推論フレームワークである反復的知識蒸留(VKD)を提案する。
提案手法の有効性を,X線画像とEHRを用いた3つの公開ベンチマークデータセットに示す。
論文 参考訳(メタデータ) (2021-03-19T14:13:56Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
ディープラーニングは、病気の識別性能を改善するための最も強力なコンピュータ支援診断技術となった。
胸部X線撮影では、大規模データの注釈付けには専門的なドメイン知識が必要で、時間を要する。
本論文では、単一モデルにおける疾患同定性能を改善するために、複数対1の分布学習(MODL)とK-nearest neighbor smoothing(KNNS)手法を提案する。
論文 参考訳(メタデータ) (2021-02-26T02:29:30Z) - Evaluating the Clinical Realism of Synthetic Chest X-Rays Generated
Using Progressively Growing GANs [0.0]
胸部X線は多くの患者のワークアップに欠かせない道具である。
新たな診断ツールを開発するためには,ラベル付きデータの量を増やす必要がある。
これまでの研究は、イメージを合成してトレーニングデータを増強するクラス固有のGANを作成することで、これらの問題に対処しようとしてきた。
論文 参考訳(メタデータ) (2020-10-07T11:47:22Z) - Learning Invariant Feature Representation to Improve Generalization
across Chest X-ray Datasets [55.06983249986729]
我々は、トレーニングデータと同じデータセットでテストすると、ディープラーニングモデルが、異なるソースからデータセットでテストされると、パフォーマンスが低下し始めることを示す。
対戦型トレーニング戦略を用いることで、ネットワークはソース不変表現を学習せざるを得ないことを示す。
論文 参考訳(メタデータ) (2020-08-04T07:41:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。