論文の概要: A Review of ChatGPT Applications in Education, Marketing, Software
Engineering, and Healthcare: Benefits, Drawbacks, and Research Directions
- arxiv url: http://arxiv.org/abs/2305.00237v1
- Date: Sat, 29 Apr 2023 11:25:43 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-02 16:21:32.558807
- Title: A Review of ChatGPT Applications in Education, Marketing, Software
Engineering, and Healthcare: Benefits, Drawbacks, and Research Directions
- Title(参考訳): 教育, マーケティング, ソフトウェア工学, 医療におけるChatGPT応用の概観:利益, 欠点, 研究の方向性
- Authors: Mohammad Fraiwan and Natheer Khasawneh
- Abstract要約: ChatGPTは、ディープラーニングアルゴリズムを使用して、テキストベースのプロンプトに対する人間的な応答を生成する人工知能言語モデルの一種である。
2022年11月のChatGPTの最新版の導入は、産業と学術のコミュニティに衝撃を与えた。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: ChatGPT is a type of artificial intelligence language model that uses deep
learning algorithms to generate human-like responses to text-based prompts. The
introduction of the latest ChatGPT version in November of 2022 has caused
shockwaves in the industrial and academic communities for its powerful
capabilities, plethora of possible applications, and the great possibility for
abuse. At the time of writing this work, several other language models (e.g.,
Google Bard and Meta LLaMA) just came out in an attempt to get a foothold in
the vast possible market. These models have the ability to revolutionize the
way we interact with computers and have potential applications in many fields,
including education, software engineering, healthcare, and marketing. In this
paper, we will discuss the possible applications, drawbacks, and research
directions using advanced language Chatbots (e.g., ChatGPT) in each of these
fields. We first start with a brief introduction and the development timeline
of artificial intelligence based language models, then we go through possible
applications of such models, after that we discuss the limitations and
drawbacks of the current technological state of the art, and finally we point
out future possible research directions.
- Abstract(参考訳): ChatGPTは、ディープラーニングアルゴリズムを使用して、テキストベースのプロンプトに対する人間的な応答を生成する人工知能言語モデルの一種である。
2022年11月に最新のchatgptバージョンが導入されたことで、産業コミュニティと学術コミュニティは、その強力な能力、多くの応用可能性、そして悪用の可能性に衝撃を与えた。
この作品の執筆時点で、他のいくつかの言語モデル(google bardやmeta llamaなど)が、可能な限りの市場における足場を築こうと試みて登場した。
これらのモデルには、コンピュータとの対話方法に革命を起こす能力があり、教育、ソフトウェア工学、医療、マーケティングなど、多くの分野に潜在的な応用がある。
本稿では,これらの分野における高度な言語チャットボット(例えばchatgpt)を用いたアプリケーション,欠点,研究の方向性について述べる。
まず、人工知能に基づく言語モデルの簡単な導入と開発スケジュールから始め、その後、そのようなモデルの応用の可能性について検討し、その後、現在の技術状況の限界と欠点について議論し、最後に、今後の研究の方向性を指摘する。
関連論文リスト
- Video as the New Language for Real-World Decision Making [100.68643056416394]
ビデオデータは、言語で表現しにくい物理世界に関する重要な情報をキャプチャする。
ビデオは、インターネットの知識を吸収し、多様なタスクを表現できる統一インターフェースとして機能する。
ロボット工学、自動運転、科学といった分野における大きなインパクトの機会を特定します。
論文 参考訳(メタデータ) (2024-02-27T02:05:29Z) - Exploring ChatGPT and its Impact on Society [7.652195319352287]
ChatGPTは大きな言語モデルであり、会話の文脈で人間のような応答を生成することができる。
それは、さまざまな産業に革命をもたらす可能性があり、テクノロジーとの対話の仕方を変革する。
しかし、ChatGPTの使用は、倫理的、社会的、雇用上の問題など、いくつかの懸念を提起している。
論文 参考訳(メタデータ) (2024-02-21T16:44:35Z) - Language Models: A Guide for the Perplexed [51.88841610098437]
このチュートリアルは、言語モデルを学ぶ人と、興味を持ち、もっと学びたいと思う人とのギャップを狭めることを目的としています。
実験を通して学ぶことができる質問に焦点を当てた科学的視点を提供する。
言語モデルは、現在、その開発に繋がる研究の文脈に置かれています。
論文 参考訳(メタデータ) (2023-11-29T01:19:02Z) - Generative AI: Implications and Applications for Education [0.0]
2022年11月のChatGPTの打ち上げは、一部の教育者の間でパニックを巻き起こし、他者からの資格ある熱意を喚起した。
Generative AIという抽象用語の下では、ChatGPTはコンピュータ生成テキスト、画像、その他のデジタルメディアを配信するための様々な技術の例である。
論文 参考訳(メタデータ) (2023-05-12T16:52:38Z) - ChatGPT: Applications, Opportunities, and Threats [0.0]
ChatGPTは、教師付き機械学習と強化学習技術を用いて微調整された人工知能技術である。
このシステムは、事前学習されたディープラーニングモデルのパワーとプログラマビリティレイヤを組み合わせることで、自然言語会話を生成する強力な基盤を提供する。
自然に聞こえる応答を生成する能力は例外的であるが、著者らはChatGPTが人間と同じレベルの理解、共感、創造性を持っていないと考えている。
論文 参考訳(メタデータ) (2023-04-14T16:25:03Z) - ChatGPT Beyond English: Towards a Comprehensive Evaluation of Large
Language Models in Multilingual Learning [70.57126720079971]
大規模言語モデル(LLM)は、自然言語処理(NLP)において最も重要なブレークスルーとして登場した。
本稿では,高,中,低,低リソースの37言語を対象として,ChatGPTを7つのタスクで評価する。
従来のモデルと比較すると,様々なNLPタスクや言語に対するChatGPTの性能は低下していた。
論文 参考訳(メタデータ) (2023-04-12T05:08:52Z) - Unlocking the Potential of ChatGPT: A Comprehensive Exploration of its Applications, Advantages, Limitations, and Future Directions in Natural Language Processing [4.13365552362244]
ChatGPTはチャットボット、コンテンツ生成、言語翻訳、パーソナライズされたレコメンデーション、医療診断や治療など、多くの分野でうまく適用されてきた。
これらの応用におけるその成功は、人間のような応答を生成し、自然言語を理解し、異なる文脈に適応する能力に起因している。
この記事では、ChatGPTとその応用、利点、限界について概観する。
論文 参考訳(メタデータ) (2023-03-27T21:27:58Z) - ChatGPT and a New Academic Reality: Artificial Intelligence-Written
Research Papers and the Ethics of the Large Language Models in Scholarly
Publishing [6.109522330180625]
ChatGPTは、テキストベースのユーザ要求を満たすために自然言語処理を使用する生成事前学習トランスフォーマーである。
GPT-3のような大規模言語モデルの出現に伴う潜在的な倫理的問題について論じる。
論文 参考訳(メタデータ) (2023-03-21T14:35:07Z) - A Complete Survey on Generative AI (AIGC): Is ChatGPT from GPT-4 to
GPT-5 All You Need? [112.12974778019304]
生成AI(AIGC、つまりAI生成コンテンツ)は、テキスト、画像、その他を分析、作成する能力により、あらゆる場所で話題を呼んだ。
純粋な分析から創造へと移行するAIの時代において、ChatGPTは最新の言語モデルであるGPT-4とともに、多くのAIGCタスクからなるツールである。
本研究は,テキスト,画像,ビデオ,3Dコンテンツなど,出力タイプに基づいたAIGCタスクの技術的開発に焦点を当てている。
論文 参考訳(メタデータ) (2023-03-21T10:09:47Z) - Do As I Can, Not As I Say: Grounding Language in Robotic Affordances [119.29555551279155]
大規模な言語モデルは、世界に関する豊富な意味知識を符号化することができる。
このような知識は、自然言語で表現された高レベルで時間的に拡張された命令を動作させようとするロボットにとって極めて有用である。
低レベルのスキルを大規模言語モデルと組み合わせることで,言語モデルが複雑かつ時間的に拡張された命令を実行する手順について高いレベルの知識を提供することを示す。
論文 参考訳(メタデータ) (2022-04-04T17:57:11Z) - Few-Shot Bot: Prompt-Based Learning for Dialogue Systems [58.27337673451943]
ごく少数の例を使って会話を学ぶことは、会話型AIにおける大きな課題である。
現在の最良の会話モデルは、良いチャットシャッター(例:BlenderBot)またはゴール指向システム(例:MinTL)である。
グラデーションベースの微調整を必要とせず、学習の唯一の源としていくつかの例を用いるプロンプトベースの数ショット学習を提案する。
論文 参考訳(メタデータ) (2021-10-15T14:36:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。