Price predictability in limit order book with deep learning model
- URL: http://arxiv.org/abs/2409.14157v1
- Date: Sat, 21 Sep 2024 14:40:13 GMT
- Title: Price predictability in limit order book with deep learning model
- Authors: Kyungsub Lee,
- Abstract summary: This study explores the prediction of high-frequency price changes using deep learning models.
We found that an inadequately defined target price process may render predictions meaningless by incorporating past information.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study explores the prediction of high-frequency price changes using deep learning models. Although state-of-the-art methods perform well, their complexity impedes the understanding of successful predictions. We found that an inadequately defined target price process may render predictions meaningless by incorporating past information. The commonly used three-class problem in asset price prediction can generally be divided into volatility and directional prediction. When relying solely on the price process, directional prediction performance is not substantial. However, volume imbalance improves directional prediction performance.
Related papers
- Indian Stock Market Prediction using Augmented Financial Intelligence ML [0.0]
This paper presents price prediction models using Machine Learning algorithms augmented with Superforecasters predictions.
The models are evaluated using the Mean Absolute Error to determine their predictive accuracy.
The main goal is to identify Superforecasters and track their predictions to anticipate unpredictable shifts or changes in stock prices.
arXiv Detail & Related papers (2024-07-02T12:58:50Z) - Diffusion Variational Autoencoder for Tackling Stochasticity in
Multi-Step Regression Stock Price Prediction [54.21695754082441]
Multi-step stock price prediction over a long-term horizon is crucial for forecasting its volatility.
Current solutions to multi-step stock price prediction are mostly designed for single-step, classification-based predictions.
We combine a deep hierarchical variational-autoencoder (VAE) and diffusion probabilistic techniques to do seq2seq stock prediction.
Our model is shown to outperform state-of-the-art solutions in terms of its prediction accuracy and variance.
arXiv Detail & Related papers (2023-08-18T16:21:15Z) - Electricity Price Prediction for Energy Storage System Arbitrage: A
Decision-focused Approach [4.992622806418143]
Electricity price prediction plays a vital role in energy storage system (ESS) management.
Current prediction models focus on reducing prediction errors but overlook their impact on downstream decision-making.
This paper proposes a decision-focused electricity price prediction approach for ESS arbitrage to bridge the gap from the downstream optimization model to the prediction model.
arXiv Detail & Related papers (2023-04-30T00:43:26Z) - Learning Sample Difficulty from Pre-trained Models for Reliable
Prediction [55.77136037458667]
We propose to utilize large-scale pre-trained models to guide downstream model training with sample difficulty-aware entropy regularization.
We simultaneously improve accuracy and uncertainty calibration across challenging benchmarks.
arXiv Detail & Related papers (2023-04-20T07:29:23Z) - Data Uncertainty without Prediction Models [0.8223798883838329]
We propose an uncertainty estimation method named a Distance-weighted Class Impurity without explicit use of prediction models.
We verified that the Distance-weighted Class Impurity works effectively regardless of prediction models.
arXiv Detail & Related papers (2022-04-25T13:26:06Z) - Taming Overconfident Prediction on Unlabeled Data from Hindsight [50.9088560433925]
Minimizing prediction uncertainty on unlabeled data is a key factor to achieve good performance in semi-supervised learning.
This paper proposes a dual mechanism, named ADaptive Sharpening (ADS), which first applies a soft-threshold to adaptively mask out determinate and negligible predictions.
ADS significantly improves the state-of-the-art SSL methods by making it a plug-in.
arXiv Detail & Related papers (2021-12-15T15:17:02Z) - Learning to Predict Trustworthiness with Steep Slope Loss [69.40817968905495]
We study the problem of predicting trustworthiness on real-world large-scale datasets.
We observe that the trustworthiness predictors trained with prior-art loss functions are prone to view both correct predictions and incorrect predictions to be trustworthy.
We propose a novel steep slope loss to separate the features w.r.t. correct predictions from the ones w.r.t. incorrect predictions by two slide-like curves that oppose each other.
arXiv Detail & Related papers (2021-09-30T19:19:09Z) - Stock Price Prediction Under Anomalous Circumstances [81.37657557441649]
This paper aims to capture the movement pattern of stock prices under anomalous circumstances.
We train ARIMA and LSTM models at the single-stock level, industry level, and general market level.
Based on 100 companies' stock prices in the period of 2016 to 2020, the models achieve an average prediction accuracy of 98%.
arXiv Detail & Related papers (2021-09-14T18:50:38Z) - Design and Analysis of Robust Deep Learning Models for Stock Price
Prediction [0.0]
Building predictive models for robust and accurate prediction of stock prices and stock price movement is a challenging research problem to solve.
This chapter proposes a collection of predictive regression models built on deep learning architecture for robust and precise prediction of the future prices of a stock listed in the diversified sectors in the National Stock Exchange (NSE) of India.
arXiv Detail & Related papers (2021-06-17T17:15:02Z) - Counterfactual Predictions under Runtime Confounding [74.90756694584839]
We study the counterfactual prediction task in the setting where all relevant factors are captured in the historical data.
We propose a doubly-robust procedure for learning counterfactual prediction models in this setting.
arXiv Detail & Related papers (2020-06-30T15:49:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.