論文の概要: The ART of Transfer Learning: An Adaptive and Robust Pipeline
- arxiv url: http://arxiv.org/abs/2305.00520v1
- Date: Sun, 30 Apr 2023 16:36:57 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-02 14:58:22.513942
- Title: The ART of Transfer Learning: An Adaptive and Robust Pipeline
- Title(参考訳): 転校学習の技法 : 適応的かつロバストなパイプライン
- Authors: Boxiang Wang, Yunan Wu, and Chenglong Ye
- Abstract要約: 本稿では,汎用機械学習アルゴリズムを用いた伝達学習の柔軟なパイプラインであるAdaptive Robust Transfer Learning (ART)を提案する。
我々はARTの非漸近的学習理論を確立し、負の移動を防止しつつ適応的な移動を達成するための証明可能な理論的保証を提供する。
我々は、回帰、分類、スパース学習に関する広範な実証的研究を通じてARTの有望な性能を実証する。
- 参考スコア(独自算出の注目度): 2.294014185517203
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Transfer learning is an essential tool for improving the performance of
primary tasks by leveraging information from auxiliary data resources. In this
work, we propose Adaptive Robust Transfer Learning (ART), a flexible pipeline
of performing transfer learning with generic machine learning algorithms. We
establish the non-asymptotic learning theory of ART, providing a provable
theoretical guarantee for achieving adaptive transfer while preventing negative
transfer. Additionally, we introduce an ART-integrated-aggregating machine that
produces a single final model when multiple candidate algorithms are
considered. We demonstrate the promising performance of ART through extensive
empirical studies on regression, classification, and sparse learning. We
further present a real-data analysis for a mortality study.
- Abstract(参考訳): 転送学習は,補助データ資源からの情報を活用し,プライマリタスクのパフォーマンスを向上させる上で不可欠なツールである。
本研究では,汎用機械学習アルゴリズムを用いて伝達学習を行う柔軟なパイプラインであるAdaptive Robust Transfer Learning (ART)を提案する。
我々はARTの非漸近学習理論を確立し、負の転送を防止しつつ適応的な転送を実現するための証明可能な理論的保証を提供する。
さらに,複数の候補アルゴリズムを検討する際に,単一の最終モデルを生成するART統合集約マシンを導入する。
回帰,分類,スパース学習に関する広範な実証研究を通じて,アートの有望なパフォーマンスを示す。
さらに,死亡率調査のための実データ分析を行う。
関連論文リスト
- Learn from the Learnt: Source-Free Active Domain Adaptation via Contrastive Sampling and Visual Persistence [60.37934652213881]
ドメイン適応(DA)は、ソースドメインから関連するターゲットドメインへの知識伝達を容易にする。
本稿では、ソースデータフリーなアクティブドメイン適応(SFADA)という実用的なDAパラダイムについて検討する。
本稿では,学習者学習(LFTL)というSFADAの新たなパラダイムを紹介し,学習した学習知識を事前学習モデルから活用し,余分なオーバーヘッドを伴わずにモデルを積極的に反復する。
論文 参考訳(メタデータ) (2024-07-26T17:51:58Z) - H-ensemble: An Information Theoretic Approach to Reliable Few-Shot
Multi-Source-Free Transfer [4.328706834250445]
本稿では,対象タスクに対するソースモデルの最適線形結合を学習するHアンサンブル(H-ensemble)というフレームワークを提案する。
H-アンサンブルは,1)少数の目標タスクに対する新しいMSF設定への適応性,2)理論的信頼性,3)解釈や適応が容易な軽量構造を特徴とする。
我々は,Hアンサンブルが最適なタスクアンサンブルを学習し,先行技術より優れていることを示す。
論文 参考訳(メタデータ) (2023-12-19T17:39:34Z) - Model-Based Reinforcement Learning with Multi-Task Offline Pretraining [59.82457030180094]
本稿では,オフラインデータから新しいタスクへ,潜在的に有用なダイナミックスや動作デモを伝達するモデルベースRL法を提案する。
主な考え方は、世界モデルを行動学習のシミュレーターとしてだけでなく、タスクの関連性を測定するツールとして使うことである。
本稿では,Meta-WorldとDeepMind Control Suiteの最先端手法と比較して,我々のアプローチの利点を実証する。
論文 参考訳(メタデータ) (2023-06-06T02:24:41Z) - ArCL: Enhancing Contrastive Learning with Augmentation-Robust
Representations [30.745749133759304]
我々は,自己教師付きコントラスト学習の伝達可能性を分析する理論的枠組みを開発する。
対照的な学習は、その伝達可能性を制限するような、ドメイン不変の機能を学ぶのに失敗することを示す。
これらの理論的知見に基づき、Augmentation-robust Contrastive Learning (ArCL) と呼ばれる新しい手法を提案する。
論文 参考訳(メタデータ) (2023-03-02T09:26:20Z) - On Hypothesis Transfer Learning of Functional Linear Models [8.557392136621894]
再生カーネル空間(RKHS)フレームワークを用いて,関数線形回帰(FLR)のための伝達学習(TL)について検討する。
我々は、RKHS距離を用いてタスク間の類似度を測定し、RKHSの特性に関連付けられた情報の転送を行う。
2つのアルゴリズムが提案され、1つは正のソースが分かっているときに転送を行い、もう1つはアグリゲーションを利用してソースに関する事前情報なしでロバストな転送を行う。
論文 参考訳(メタデータ) (2022-06-09T04:50:16Z) - Multi-Augmentation for Efficient Visual Representation Learning for
Self-supervised Pre-training [1.3733988835863333]
本稿では、パイプライン全体を構築するための様々な拡張ポリシーを網羅的に検索する、自己改善学習のためのマルチ強化(MA-SSRL)を提案する。
MA-SSRLは不変の特徴表現をうまく学習し、自己教師付き事前学習のための効率的で効果的で適応可能なデータ拡張パイプラインを提供する。
論文 参考訳(メタデータ) (2022-05-24T04:18:39Z) - BERT WEAVER: Using WEight AVERaging to enable lifelong learning for
transformer-based models in biomedical semantic search engines [49.75878234192369]
We present WEAVER, a simple, yet efficient post-processing method that infuse old knowledge into the new model。
WEAVERを逐次的に適用すると、同じ単語の埋め込み分布が、一度にすべてのデータに対する総合的なトレーニングとして得られることを示す。
論文 参考訳(メタデータ) (2022-02-21T10:34:41Z) - Boosting Deep Transfer Learning for COVID-19 Classification [18.39034705389625]
胸部CTを用いた新型コロナウイルスの分類は現実的に有用である。
限られたCTデータでより正確な新型コロナウイルス分類のためのバニラ転送学習よりも優れた戦略があるかどうかはまだ不明です。
本稿では,タスクの伝達学習において,大幅な性能向上を実現する新しいモデル拡張手法を提案する。
論文 参考訳(メタデータ) (2021-02-16T11:15:23Z) - Transfer Learning without Knowing: Reprogramming Black-box Machine
Learning Models with Scarce Data and Limited Resources [78.72922528736011]
そこで我々は,ブラックボックス・アタベラル・リプログラミング (BAR) という新しい手法を提案する。
ゼロオーダー最適化とマルチラベルマッピング技術を用いて、BARは入力出力応答のみに基づいてブラックボックスMLモデルをプログラムする。
BARは最先端の手法より優れ、バニラ対逆プログラミング法に匹敵する性能を得る。
論文 参考訳(メタデータ) (2020-07-17T01:52:34Z) - Uniform Priors for Data-Efficient Transfer [65.086680950871]
もっとも移動可能な特徴は埋め込み空間において高い均一性を有することを示す。
我々は、未確認のタスクやデータへの適応を容易にする能力の正規化を評価する。
論文 参考訳(メタデータ) (2020-06-30T04:39:36Z) - Task-Feature Collaborative Learning with Application to Personalized
Attribute Prediction [166.87111665908333]
本稿では,TFCL(Task-Feature Collaborative Learning)と呼ばれる新しいマルチタスク学習手法を提案する。
具体的には、まず、特徴とタスクの協調的なグループ化を活用するために、不均一なブロック対角構造正規化器を用いたベースモデルを提案する。
実際の拡張として,重なり合う機能と難易度を区別することで,基本モデルを拡張します。
論文 参考訳(メタデータ) (2020-04-29T02:32:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。