Quantum Wrapper Networking
- URL: http://arxiv.org/abs/2305.00591v1
- Date: Sun, 30 Apr 2023 22:24:45 GMT
- Title: Quantum Wrapper Networking
- Authors: S. J. Ben Yoo, Sandeep Kumar Singh, Mehmet Berkay On, Gamze Gul,
Gregory S. Kanter, Roberto Proietti, and Prem Kumar
- Abstract summary: Quantum wrapper net- works (QWNs) enable the transparent and interoperable transportation of quantum wrapper datagrams.
QWNs can utilize the common network control and management for performance monitoring on the classical header and infer the quantum channel quality.
- Score: 0.8431877864777444
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce a new concept of Quantum Wrapper Networking, which enables
control, management, and operation of quantum networks that can co-exist with
classical networks while keeping the requirements for quantum networks intact.
The quantum wrapper net- works (QWNs) enable the transparent and interoperable
transportation of quantum wrapper datagrams consisting of quantum payloads and,
notably, classical headers to facilitate the datagram switching without
measuring or disturbing the qubits of the quantum payload. Further- more, QWNs
can utilize the common network control and management for performance
monitoring on the classical header and infer the quantum channel quality.
Related papers
- A Brief Introduction to Quantum Network Control [7.952919774651851]
Quantum networking is an emerging area with the potential to transform information processing and communications.
We present a brief introduction to quantum network control, an area dedicated to designing algorithms for distributing entanglement (i.e., entangled qubits)
We present a model for distributing entanglement in a multi-hop quantum network to enable applications such as quantum key distribution and distributed quantum computing.
arXiv Detail & Related papers (2024-07-29T11:21:45Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - Hybrid packet switching assisted by classical frame for
entanglement-based quantum networks [15.375590359810554]
We propose a new hybrid packet switching for entanglement-based quantum networks assisted by classical frame.
Using our hybrid packet switching, the process of building entanglement channel between end nodes is analogous to the classical packet-switched networks.
arXiv Detail & Related papers (2023-10-04T12:37:10Z) - Entanglement-Assisted Quantum Networks: Mechanics, Enabling
Technologies, Challenges, and Research Directions [66.27337498864556]
This paper presents a comprehensive survey of entanglement-assisted quantum networks.
It provides a detailed overview of the network structure, working principles, and development stages.
It also emphasizes open research directions, including architecture design, entanglement-based network issues, and standardization.
arXiv Detail & Related papers (2023-07-24T02:48:22Z) - Universal Quantum Walk Control Plane for Quantum Networks [13.312617444422553]
We describe a Quantum Walk Control Protocol (QWCP) to perform distributed quantum operations in a quantum network.
Multiple interacting quantum walks can be used to propagate entangled control signals across the network in parallel.
arXiv Detail & Related papers (2023-07-12T23:43:37Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
We propose quantum graph convolutional networks (QuanGCN), which learns the local message passing among nodes with the sequence of crossing-gate quantum operations.
To mitigate the inherent noises from modern quantum devices, we apply sparse constraint to sparsify the nodes' connections.
Our QuanGCN is functionally comparable or even superior than the classical algorithms on several benchmark graph datasets.
arXiv Detail & Related papers (2022-11-09T21:43:16Z) - Packet Switching in Quantum Networks: A Path to Quantum Internet [0.0]
We introduce packet switching as a new paradigm for quantum data transmission in future and near-term quantum networks.
We propose a classical-quantum data frame structure and explore methods of frame generation and processing.
We present conceptual designs for a quantum reconfigurable optical add-drop multiplexer to realize the proposed transmission scheme.
arXiv Detail & Related papers (2022-05-16T08:39:05Z) - An Evolutionary Pathway for the Quantum Internet Relying on Secure
Classical Repeaters [64.48099252278821]
We conceive quantum networks using secure classical repeaters combined with the quantum secure direct communication principle.
In these networks, the ciphertext gleaned from a quantum-resistant algorithm is transmitted using QSDC along the nodes.
We have presented the first experimental demonstration of a secure classical repeater based hybrid quantum network.
arXiv Detail & Related papers (2022-02-08T03:24:06Z) - The Computational and Latency Advantage of Quantum Communication
Networks [70.01340727637825]
This article summarises the current status of classical communication networks.
It identifies some critical open research challenges that can only be solved by leveraging quantum technologies.
arXiv Detail & Related papers (2021-06-07T06:31:02Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
Quantum machine learning (QML) has emerged as a promising field that leans on the developments in quantum computing to explore large complex machine learning problems.
This paper proposes the first fully quantum federated learning framework that can operate over quantum data and, thus, share the learning of quantum circuit parameters in a decentralized manner.
arXiv Detail & Related papers (2021-05-30T12:19:27Z) - A Quantum Network Node with Crossed Optical Fibre Cavities [0.0]
We develop a quantum network node that connects to two quantum channels.
It functions as a passive, heralded and high-fidelity quantum memory.
Our node is robust, fits naturally into larger fibre-based networks, can be scaled to more cavities, and thus provides clear perspectives for a quantum internet.
arXiv Detail & Related papers (2020-04-19T12:17:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.