論文の概要: From Biological Synapses to Intelligent Robots
- arxiv url: http://arxiv.org/abs/2202.12660v1
- Date: Fri, 25 Feb 2022 12:39:22 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-23 23:36:40.274332
- Title: From Biological Synapses to Intelligent Robots
- Title(参考訳): 生物のシナプスから知能ロボットへ
- Authors: Birgitta Dresp-Langley
- Abstract要約: ヘビアンシナプス学習は、機械学習とインテリジェンスのための機能的関連モデルとして議論されている。
適応的な学習と制御の可能性を、監督なしで先導する。
ここで収集された洞察は、インテリジェントなロボティクスとセンサーシステムの選択ソリューションとして、Hebbianモデルに向けられている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This review explores biologically inspired learning as a model for
intelligent robot control and sensing technology on the basis of specific
examples. Hebbian synaptic learning is discussed as a functionally relevant
model for machine learning and intelligence, as explained on the basis of
examples from the highly plastic biological neural networks of invertebrates
and vertebrates. Its potential for adaptive learning and control without
supervision, the generation of functional complexity, and control architectures
based on self organization is brought forward. Learning without prior knowledge
based on excitatory and inhibitory neural mechanisms accounts for the process
through which survival or task relevant representations are either reinforced
or suppressed. The basic mechanisms of unsupervised biological learning drive
synaptic plasticity and adaptation for behavioral success in living brains with
different levels of complexity. The insights collected here point toward the
Hebbian model as a choice solution for intelligent robotics and sensor systems.
Keywords: Hebbian learning, synaptic plasticity, neural networks, self
organization, brain, reinforcement, sensory processing, robot control
- Abstract(参考訳): 本論では,知的ロボット制御・センシング技術のモデルとして,生物学的にインスパイアされた学習を考察する。
ヘビアンシナプス学習は、無脊椎動物と脊椎動物の高可塑性生物学的ニューラルネットワークの例に基づくように、機械学習とインテリジェンスのための機能的関連モデルとして議論されている。
教師なしの適応学習と制御の可能性、機能的複雑性の生成、そして自己組織化に基づく制御アーキテクチャが前進する。
興奮的および抑制的神経機構に基づく事前知識のない学習は、生存またはタスクに関連する表現が強化または抑制される過程を説明する。
教師なし生物学習の基本メカニズムはシナプス可塑性を駆動し、複雑度が異なる生体脳の行動成功に適応する。
ここで収集された洞察は、インテリジェントロボットとセンサーシステムの選択ソリューションとして、hebbianモデルに向かっている。
キーワード:ヘビアン学習、シナプス可塑性、ニューラルネットワーク、自己組織化、脳、強化、感覚処理、ロボット制御
関連論文リスト
- Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
本稿では,神経生物学にインスパイアされた,あるいは動機付けられた人工ニューラルネットワークにおける信用割当を行うアルゴリズムについて検討する。
我々は、脳にインスパイアされた学習スキームを6つの一般的なファミリーにまとめ、これらを誤りのバックプロパゲーションの文脈で検討する。
本研究の成果は,神経ミメティックシステムとその構成的学習プロセスの今後の発展を促進することを目的としている。
論文 参考訳(メタデータ) (2023-12-01T05:20:57Z) - A Neuro-mimetic Realization of the Common Model of Cognition via Hebbian
Learning and Free Energy Minimization [55.11642177631929]
大規模なニューラル生成モデルは、意味的に豊富なテキストのパスを合成したり、複雑な画像を生成することができる。
我々はコモン・モデル・オブ・コグニティブ・ニューラル・ジェネレーティブ・システムについて論じる。
論文 参考訳(メタデータ) (2023-10-14T23:28:48Z) - Brain-inspired learning in artificial neural networks: a review [5.064447369892274]
人工ニューラルネットワークにおける脳にインスパイアされた学習表現について概説する。
これらのネットワークの能力を高めるために, シナプス可塑性などの生物学的に妥当な機構の統合について検討する。
論文 参考訳(メタデータ) (2023-05-18T18:34:29Z) - Incremental procedural and sensorimotor learning in cognitive humanoid
robots [52.77024349608834]
本研究は,手順を段階的に学習する認知エージェントを提案する。
各サブステージで必要とされる認知機能と, エージェントが未解決の課題に, 新たな機能の追加がどう対処するかを示す。
結果は、このアプローチが複雑なタスクを段階的に解くことができることを示している。
論文 参考訳(メタデータ) (2023-04-30T22:51:31Z) - Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits [61.94533459151743]
この研究は、スパイキングネットワークのシナプスを調整するための神経生物学的に動機づけられたスキームを設計することの課題に対処する。
我々の実験シミュレーションは、繰り返しスパイクネットワークを訓練する際、他の生物学的に証明可能なアプローチに対して一貫した優位性を示す。
論文 参考訳(メタデータ) (2023-03-30T02:40:28Z) - Control of synaptic plasticity via the fusion of reinforcement learning
and unsupervised learning in neural networks [0.0]
認知神経科学では、シナプスの可塑性が我々の驚くべき学習能力に不可欠な役割を担っていると広く受け入れられている。
このインスピレーションにより、強化学習と教師なし学習の融合により、新しい学習規則が提案される。
提案した計算モデルでは,非線形最適制御理論を誤差フィードバックループ系に類似させる。
論文 参考訳(メタデータ) (2023-03-26T12:18:03Z) - World Models and Predictive Coding for Cognitive and Developmental
Robotics: Frontiers and Challenges [51.92834011423463]
我々は世界モデルと予測符号化の2つの概念に焦点を当てる。
神経科学において、予測符号化は、脳がその入力を継続的に予測し、その環境における自身のダイナミクスと制御行動のモデル化に適応するように提案する。
論文 参考訳(メタデータ) (2023-01-14T06:38:14Z) - Learning body models: from humans to humanoids [2.855485723554975]
人間と動物は、複数の感覚のモダリティからの情報を組み合わせて、複雑な体を制御し、成長、失敗、ツールの使用に適応する。
鍵となる基礎は、エージェント(人間、動物、ロボット)が開発してきた身体の内部表現である。
脳内での体モデルの操作のメカニズムは、ほとんど不明であり、出生後の経験からどのように構築されているかは、あまり分かっていない。
論文 参考訳(メタデータ) (2022-11-06T07:30:01Z) - Learning to acquire novel cognitive tasks with evolution, plasticity and
meta-meta-learning [3.8073142980733]
メタラーニングでは、ネットワークは外部アルゴリズムでトレーニングされ、タスクの新しいインスタンスごとに予測不可能な情報を取得し、保存し、活用する必要があるタスクを学習する。
ここでは、神経科学モデリングフレームワークに基づく単純なメタ学習タスクのセットで、プラスティック接続を備えたニューラルネットワークを進化させます。
進化したネットワークは、進化した神経組織と塑性構造を自発的に操作することで、トレーニング中に見ることのない、新しい単純な認知タスクを自動的に取得することができる。
論文 参考訳(メタデータ) (2021-12-16T03:18:01Z) - Cognitive architecture aided by working-memory for self-supervised
multi-modal humans recognition [54.749127627191655]
人間パートナーを認識する能力は、パーソナライズされた長期的な人間とロボットの相互作用を構築するための重要な社会的スキルです。
ディープラーニングネットワークは最先端の結果を達成し,そのような課題に対処するための適切なツールであることが実証された。
1つの解決策は、ロボットに自己スーパービジョンで直接の感覚データから学習させることである。
論文 参考訳(メタデータ) (2021-03-16T13:50:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。