論文の概要: Logion: Machine Learning for Greek Philology
- arxiv url: http://arxiv.org/abs/2305.01099v1
- Date: Mon, 1 May 2023 21:56:25 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-03 16:01:02.362979
- Title: Logion: Machine Learning for Greek Philology
- Title(参考訳): Logion: ギリシャ哲学のための機械学習
- Authors: Charlie Cowen-Breen (1), Creston Brooks (2), Johannes Haubold (2),
Barbara Graziosi (2) ((1) University of Cambridge, (2) Princeton University)
- Abstract要約: 我々は、この目的のために使用される最も大規模なギリシャのデータセットでBERTモデルをトレーニングします。
我々は、テキスト送信の過程で書記者が犯した未検出エラーを特定し、訂正する。
現代のギリシア語の文法的特徴をコード化しているような注意点があることが判明した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents machine-learning methods to address various problems in
Greek philology. After training a BERT model on the largest premodern Greek
dataset used for this purpose to date, we identify and correct previously
undetected errors made by scribes in the process of textual transmission, in
what is, to our knowledge, the first successful identification of such errors
via machine learning. Additionally, we demonstrate the model's capacity to fill
gaps caused by material deterioration of premodern manuscripts and compare the
model's performance to that of a domain expert. We find that best performance
is achieved when the domain expert is provided with model suggestions for
inspiration. With such human-computer collaborations in mind, we explore the
model's interpretability and find that certain attention heads appear to encode
select grammatical features of premodern Greek.
- Abstract(参考訳): 本稿では,ギリシア哲学における様々な問題に対処する機械学習手法を提案する。
この目的のために現在まで使用されている、最も大規模なギリシャのデータセット上でbertモデルをトレーニングした後、テキスト送信の過程で、著者によって検出されていないエラーを識別し、修正します。
さらに,前近代写本の材質劣化によるギャップを埋めるモデルの能力を実証し,モデルの性能をドメイン専門家のそれと比較する。
ドメインエキスパートにインスピレーションのためのモデル提案が提供されると、最高のパフォーマンスが得られます。
このような人間とコンピュータのコラボレーションを念頭に置いて、モデルの解釈可能性を探究し、ある注意の頭脳が前近代ギリシア語の文法的特徴を符号化しているように見えることを発見した。
関連論文リスト
- Prompting Encoder Models for Zero-Shot Classification: A Cross-Domain Study in Italian [75.94354349994576]
本稿では,より小型のドメイン固有エンコーダ LM と,特殊なコンテキストにおける性能向上手法の併用の可能性について検討する。
本研究は, イタリアの官僚的・法的言語に焦点をあて, 汎用モデルと事前学習型エンコーダのみのモデルの両方を実験する。
その結果, 事前学習したモデルでは, 一般知識の頑健性が低下する可能性があるが, ドメイン固有のタスクに対して, ゼロショット設定においても, より優れた適応性を示すことがわかった。
論文 参考訳(メタデータ) (2024-07-30T08:50:16Z) - Information Theoretic Text-to-Image Alignment [49.396917351264655]
本稿では,ステア画像生成のための情報理論アライメント尺度を用いた新しい手法を提案する。
提案手法は最先端の手法よりも優れているが,MIを推定するためには事前学習されたデノナイジングネットワークを必要としない。
論文 参考訳(メタデータ) (2024-05-31T12:20:02Z) - Dwell in the Beginning: How Language Models Embed Long Documents for Dense Retrieval [31.9252824152673]
我々は、因果言語モデルにおける入力シーケンスの途中の情報損失を実証する以前の研究に基づいて構築した。
エンコーダ・デコーダモデルの訓練段階における位置バイアスについて,言語モデル事前学習,コントラスト事前学習,コントラスト微調整などを検討した。
論文 参考訳(メタデータ) (2024-04-05T15:16:16Z) - Continuous Offline Handwriting Recognition using Deep Learning Models [0.0]
手書き文字認識は、自動文書画像解析の分野に大きな関心を持つオープンな問題である。
我々は,畳み込みニューラルネットワーク(CNN)とシーケンス・ツー・シーケンス(seq2seq)という,2種類のディープラーニングアーキテクチャの統合に基づく新しい認識モデルを提案する。
提案した新たなモデルでは,他の確立された方法論と競合する結果が得られる。
論文 参考訳(メタデータ) (2021-12-26T07:31:03Z) - Are Neural Language Models Good Plagiarists? A Benchmark for Neural
Paraphrase Detection [5.847824494580938]
トランスフォーマーアーキテクチャに基づく最近の言語モデルを用いたパラフレーズ記事からなるベンチマークを提案する。
我々の貢献は、パラフレーズ検出システムに関する将来的な研究を後押しし、大量の原文およびパラフレーズ文書のコレクションを提供する。
論文 参考訳(メタデータ) (2021-03-23T11:01:35Z) - Beyond Trivial Counterfactual Explanations with Diverse Valuable
Explanations [64.85696493596821]
コンピュータビジョンの応用において、生成的対実法はモデルの入力を摂動させて予測を変更する方法を示す。
本稿では,多様性強化損失を用いて制約される不連続潜在空間における摂動を学習する反事実法を提案する。
このモデルは, 従来の最先端手法と比較して, 高品質な説明を生産する成功率を向上させる。
論文 参考訳(メタデータ) (2021-03-18T12:57:34Z) - Knowledge as Invariance -- History and Perspectives of
Knowledge-augmented Machine Learning [69.99522650448213]
機械学習の研究は転換点にある。
研究の関心は、高度にパラメータ化されたモデルのパフォーマンス向上から、非常に具体的なタスクへとシフトしている。
このホワイトペーパーは、機械学習研究におけるこの新興分野の紹介と議論を提供する。
論文 参考訳(メタデータ) (2020-12-21T15:07:19Z) - Neural Deepfake Detection with Factual Structure of Text [78.30080218908849]
テキストのディープフェイク検出のためのグラフベースモデルを提案する。
我々のアプローチは、ある文書の事実構造をエンティティグラフとして表現する。
本モデルでは,機械生成テキストと人文テキストの事実構造の違いを識別することができる。
論文 参考訳(メタデータ) (2020-10-15T02:35:31Z) - Patching as Translation: the Data and the Metaphor [18.22949296398319]
ソフトウェアパッチは言語翻訳に似ている」ことを示す。
私たちは、経験的な発見とソフトウェア開発の一般的な知識に基づいて、モデル設計に対するより原則化されたアプローチが、よりよいソリューションをもたらすことを示しています。
このようなモデルを“概念の保護(proof-of-concept)”ツールとして実装し、それらが研究対象の翻訳ベースアーキテクチャと根本的に異なる、より効果的な方法で振る舞うことを実証的に確認します。
論文 参考訳(メタデータ) (2020-08-24T21:05:27Z) - Reverse Engineering Configurations of Neural Text Generation Models [86.9479386959155]
モデル選択の結果、機械が生成したテキストに現れるアーティファクトの研究は、新しい研究領域である。
我々は、モデリング選択が検出可能なアーティファクトを生成テキストに残すかどうかを確認するために、広範囲な診断テストを実行する。
我々の重要な発見は、厳密な実験によって裏付けられ、そのような成果物が存在することと、生成されたテキストのみを観察することで異なるモデリング選択を推測できることである。
論文 参考訳(メタデータ) (2020-04-13T21:02:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。