論文の概要: Leveraging Language Representation for Material Recommendation, Ranking,
and Exploration
- arxiv url: http://arxiv.org/abs/2305.01101v1
- Date: Mon, 1 May 2023 21:58:29 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-03 16:01:26.360852
- Title: Leveraging Language Representation for Material Recommendation, Ranking,
and Exploration
- Title(参考訳): 資料推薦・ランク付け・探索のための言語表現の活用
- Authors: Jiaxing Qu, Yuxuan Richard Xie, Elif Ertekin
- Abstract要約: 本稿では,物質科学固有の言語モデルから派生した自然言語埋め込みを用いた材料発見フレームワークを提案する。
プロトタイプ構造の多様化を実証し,未研究の高性能材料空間を同定する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Data-driven approaches for material discovery and design have been
accelerated by emerging efforts in machine learning. While there is enormous
progress towards learning the structure to property relationship of materials,
methods that allow for general representations of crystals to effectively
explore the vast material search space and identify high-performance candidates
remain limited. In this work, we introduce a material discovery framework that
uses natural language embeddings derived from material science-specific
language models as representations of compositional and structural features.
The discovery framework consists of a joint scheme that, given a query
material, first recalls candidates based on representational similarity, and
ranks the candidates based on target properties through multi-task learning.
The contextual knowledge encoded in language representations is found to convey
information about material properties and structures, enabling both similarity
analysis for recall, and multi-task learning to share information for related
properties. By applying the discovery framework to thermoelectric materials, we
demonstrate diversified recommendations of prototype structures and identify
under-studied high-performance material spaces, including halide perovskite,
delafossite-like, and spinel-like structures. By leveraging material language
representations, our framework provides a generalized means for effective
material recommendation, which is task-agnostic and can be applied to various
material systems.
- Abstract(参考訳): 物質発見と設計のためのデータ駆動アプローチは、機械学習における新たな取り組みによって加速されている。
材料の構造から物性関係への学習には大きな進歩があるが、結晶の一般表現によって広大な物質探索空間を効果的に探索し、高性能な候補を特定する方法はまだ限られている。
本研究では, 物質科学固有の言語モデルから派生した自然言語埋め込みを, 構成的・構造的特徴の表現として利用する材料発見フレームワークを提案する。
探索フレームワークは、クエリ素材が与えられた場合、まず表現的類似性に基づいて候補をリコールし、マルチタスク学習により対象特性に基づいて候補をランク付けする。
言語表現にエンコードされた文脈知識は、物質的特性と構造に関する情報を伝達し、リコールの類似性分析と、関連するプロパティに関する情報を共有するマルチタスク学習の両方を可能にする。
熱電材料に発見の枠組みを適用し, 試作構造物の多角化を実証し, ハロゲン化ペロブスカイト, デラフォサイト様, スピネル様構造を含む未研究の高性能材料空間を同定した。
本フレームワークは, 材料言語表現を活用することで, タスクに依存しない, 様々な材料システムに適用可能な, 効果的な材料レコメンデーションの一般化手段を提供する。
関連論文リスト
- MatExpert: Decomposing Materials Discovery by Mimicking Human Experts [26.364419690908992]
MatExpertは、大規模言語モデルと対照的な学習を活用して、新しい固体材料の発見と設計を加速する新しいフレームワークである。
人間の素材設計専門家のワークフローにインスパイアされた我々のアプローチは、検索、遷移、生成という3つの重要な段階を統合している。
MatExpertは、ランガウジュに基づく生成モデルを用いた計算材料発見の有意義な進歩を表している。
論文 参考訳(メタデータ) (2024-10-26T00:44:54Z) - From Tokens to Materials: Leveraging Language Models for Scientific Discovery [12.211984932142537]
本研究では, 材料科学における材料特性予測のための言語モデル埋め込みの適用について検討した。
本研究では、ドメイン固有モデル、特にMatBERTが、複合名や材料特性から暗黙的な知識を抽出する際の汎用モデルよりも優れていることを示す。
論文 参考訳(メタデータ) (2024-10-21T16:31:23Z) - MaterioMiner -- An ontology-based text mining dataset for extraction of process-structure-property entities [0.0]
本稿では,MaterioMinerデータセットと,オントロジの概念がテキストの実体と結びついている材料オントロジーについて述べる。
本稿では,3つのレーダ間の整合性について検討し,名前付きプロセス認識モデルトレーニングの実現可能性を示す。
論文 参考訳(メタデータ) (2024-08-05T21:42:59Z) - From Text to Insight: Large Language Models for Materials Science Data Extraction [4.08853418443192]
科学知識の大部分は、構造化されていない自然言語に存在する。
構造化データは革新的で体系的な材料設計に不可欠である。
大きな言語モデル(LLM)の出現は、大きな変化を示している。
論文 参考訳(メタデータ) (2024-07-23T22:23:47Z) - Language Representations Can be What Recommenders Need: Findings and Potentials [57.90679739598295]
先進的なLM表現から線形にマッピングされた項目表現は、より優れたレコメンデーション性能が得られることを示す。
この結果は、先進言語表現空間と効果的な項目表現空間との同型性を示唆している。
本研究は,自然言語処理とリコメンデーションシステムコミュニティの両方に刺激を与える言語モデリングと行動モデリングの関連性を強調した。
論文 参考訳(メタデータ) (2024-07-07T17:05:24Z) - MatText: Do Language Models Need More than Text & Scale for Materials Modeling? [5.561723952524538]
MatTextは、モデリング材料における言語モデルのパフォーマンスを体系的に評価するために設計されたベンチマークツールとデータセットのスイートである。
MatTextは、材料科学の文脈で言語モデルのパフォーマンスをトレーニングし、ベンチマークするための重要なツールを提供する。
論文 参考訳(メタデータ) (2024-06-25T05:45:07Z) - Learning to Extract Structured Entities Using Language Models [52.281701191329]
機械学習の最近の進歩は、情報抽出の分野に大きな影響を与えている。
タスクをエンティティ中心にすることで、さまざまなメトリクスの使用を可能にします。
我々は、Structured Entity extractを導入し、Adroximate Entity Set OverlaPメトリックを提案し、この分野にコントリビュートします。
論文 参考訳(メタデータ) (2024-02-06T22:15:09Z) - Knowledge Graphs and Pre-trained Language Models enhanced Representation Learning for Conversational Recommender Systems [58.561904356651276]
本稿では,対話型推薦システムのためのエンティティの意味理解を改善するために,知識強化型エンティティ表現学習(KERL)フレームワークを紹介する。
KERLは知識グラフと事前訓練された言語モデルを使用して、エンティティの意味的理解を改善する。
KERLはレコメンデーションとレスポンス生成の両方のタスクで最先端の結果を達成する。
論文 参考訳(メタデータ) (2023-12-18T06:41:23Z) - TRIE++: Towards End-to-End Information Extraction from Visually Rich
Documents [51.744527199305445]
本稿では,視覚的にリッチな文書からエンド・ツー・エンドの情報抽出フレームワークを提案する。
テキスト読み出しと情報抽出は、よく設計されたマルチモーダルコンテキストブロックを介して互いに強化することができる。
フレームワークはエンドツーエンドのトレーニング可能な方法でトレーニングでき、グローバルな最適化が達成できる。
論文 参考訳(メタデータ) (2022-07-14T08:52:07Z) - Knowledge Graph Augmented Network Towards Multiview Representation
Learning for Aspect-based Sentiment Analysis [96.53859361560505]
本稿では,知識グラフ拡張ネットワーク(KGAN)を提案する。
KGANは感情の特徴表現を、文脈、構文、知識に基づく複数の視点から捉えている。
3つの人気のあるABSAベンチマークの実験は、我々のKGANの有効性と堅牢性を示している。
論文 参考訳(メタデータ) (2022-01-13T08:25:53Z) - Exploiting Structured Knowledge in Text via Graph-Guided Representation
Learning [73.0598186896953]
本稿では、知識グラフからのガイダンスを用いて、生テキスト上で学習する2つの自己教師型タスクを提案する。
エンティティレベルのマスキング言語モデルに基づいて、最初のコントリビューションはエンティティマスキングスキームです。
既存のパラダイムとは対照的に,本手法では事前学習時にのみ,知識グラフを暗黙的に使用する。
論文 参考訳(メタデータ) (2020-04-29T14:22:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。