Technical Review of Four Different Quantum Systems: Comparative Analysis of Quantum Correlation, Signal-to-Noise Ratio, and Fidelity
- URL: http://arxiv.org/abs/2305.01226v2
- Date: Fri, 19 Apr 2024 21:39:55 GMT
- Title: Technical Review of Four Different Quantum Systems: Comparative Analysis of Quantum Correlation, Signal-to-Noise Ratio, and Fidelity
- Authors: Ahmad Salmanogli, Vahid Sharif Sirat,
- Abstract summary: We consider the electro-opto-mechanical, optoelectronics, 4-coupled qubits, and InP HEMT coupled with two external oscillator methods.
Since these systems are open quantum systems, they interact with their own environment medium and thermal bath.
We calculate the quantum correlation between cavity modes, signal-to-noise ratio, and fidelity for each system to evaluate their performance.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: This technical review examines the different methods and approaches have been used to create microwave modes of quantum correlation. Specifically, we consider the electro-opto-mechanical, optoelectronics, 4-coupled qubits, and InP HEMT coupled with two external oscillator methods, and evaluate their effectiveness for quantum applications. Since these systems are open quantum systems, they interact with their own environment medium and thermal bath. To ensure an accurate comparison, we analyzed all of the systems using the same criteria. Thus, at first all systems are introduced briefly, then the total Hamiltonian is theoretically derived, and finally, the system dynamics are analogously analyzed using the Lindblad master equation. We then calculate the quantum correlation between cavity modes, signal-to-noise ratio, and fidelity for each system to evaluate their performance. The results show that the strength and nature of the calculated quantities vary among the systems. An interesting result is the emergence of mixing behavior in the quantum correlation and signal-to-noise ratio for systems that use different cavities. It also identified a significant similarity between the 4-coupled qubits and InP HEMT coupled with external oscillators methods, where an avoided-level crossing occurs in the quantum correlation. Additionally, the study results reveal a high consistency between the signal-to-noise ratio and classical discord.
Related papers
- Efficiency of Dynamical Decoupling for (Almost) Any Spin-Boson Model [44.99833362998488]
We analytically study the dynamical decoupling of a two-level system coupled with a structured bosonic environment.
We find sufficient conditions under which dynamical decoupling works for such systems.
Our bounds reproduce the correct scaling in various relevant system parameters.
arXiv Detail & Related papers (2024-09-24T04:58:28Z) - Quantum State Transfer in Interacting, Multiple-Excitation Systems [41.94295877935867]
Quantum state transfer (QST) describes the coherent passage of quantum information from one node to another.
We describe Monte Carlo techniques which enable the discovery of a Hamiltonian that gives high-fidelity QST.
The resulting Jaynes-Cummings-Hubbard and periodic Anderson models can, in principle, be engineered in appropriate hardware to give efficient QST.
arXiv Detail & Related papers (2024-05-10T23:46:35Z) - Quantum error mitigation for Fourier moment computation [49.1574468325115]
This paper focuses on the computation of Fourier moments within the context of a nuclear effective field theory on superconducting quantum hardware.
The study integrates echo verification and noise renormalization into Hadamard tests using control reversal gates.
The analysis, conducted using noise models, reveals a significant reduction in noise strength by two orders of magnitude.
arXiv Detail & Related papers (2024-01-23T19:10:24Z) - Correlated noise enhances coherence and fidelity in coupled qubits [5.787049285733455]
Noise correlation can enhance the fidelity and purity of a maximally entangled (Bell) state.
These observations may be useful in the design of high-fidelity quantum gates and communication protocols.
arXiv Detail & Related papers (2023-08-01T21:13:35Z) - Strong quantum correlation in a pair hybrid optomechanical cavities [0.0]
We show the quantum correlation between two coupled hybrid optomechanical cavities by quantifying the non-classical correlation using Gaussian quantum discord.
We simulate quantum correlation of bipartite steady-state with continuous conditions using Guassian quantum discord.
arXiv Detail & Related papers (2023-03-31T14:27:31Z) - A Hybrid Quantum-Classical Method for Electron-Phonon Systems [40.80274768055247]
We develop a hybrid quantum-classical algorithm suitable for this type of correlated systems.
This hybrid method tackles with arbitrarily strong electron-phonon coupling without increasing the number of required qubits and quantum gates.
We benchmark the new method by applying it to the paradigmatic Hubbard-Holstein model at half filling, and show that it correctly captures the competition between charge density wave and antiferromagnetic phases.
arXiv Detail & Related papers (2023-02-20T08:08:51Z) - Quantum Correlation at Zero-IF: InP HEMT Circuitry Effect [0.0]
The quantum correlation between microwave modes in an RF electronic circuit is analyzed and studied.
The results show that InP HEMT mixes two coupling oscillator modes so that the quantum correlation is created at different frequency productions.
arXiv Detail & Related papers (2023-01-26T08:51:24Z) - Geometric phases along quantum trajectories [58.720142291102135]
We study the distribution function of geometric phases in monitored quantum systems.
For the single trajectory exhibiting no quantum jumps, a topological transition in the phase acquired after a cycle.
For the same parameters, the density matrix does not show any interference.
arXiv Detail & Related papers (2023-01-10T22:05:18Z) - Pure Dephasing of Light-Matter Systems in the Ultrastrong and
Deep-Strong Coupling Regimes [0.21108097398435333]
Pure dephasing originates from the non-dissipative information exchange between quantum systems and environments.
Here we investigate how pure dephasing of one of the components of a hybrid quantum system affects the dephasing rate of the system transitions.
arXiv Detail & Related papers (2022-05-11T08:57:15Z) - Exploring quantum correlations in a hybrid optomechanical system [0.0]
We propose a scheme of two coupled optomechanical cavities to enhance the intracavity entanglement.
Photon hopping is employed to establish couplings between optical modes, while phonon is utilized to establish couplings between mechanical tunneling resonators.
arXiv Detail & Related papers (2022-04-16T08:47:50Z) - Experimental Realization of Nonadiabatic Holonomic Single-Qubit Quantum
Gates with Two Dark Paths in a Trapped Ion [41.36300605844117]
We show nonadiabatic holonomic single-qubit quantum gates on two dark paths in a trapped $171mathrmYb+$ ion based on four-level systems with resonant drives.
We find that nontrivial holonomic two-qubit quantum gates can also be realized within current experimental technologies.
arXiv Detail & Related papers (2021-01-19T06:57:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.