論文の概要: MDENet: Multi-modal Dual-embedding Networks for Malware Open-set
Recognition
- arxiv url: http://arxiv.org/abs/2305.01245v1
- Date: Tue, 2 May 2023 08:09:51 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-03 15:05:44.797525
- Title: MDENet: Multi-modal Dual-embedding Networks for Malware Open-set
Recognition
- Title(参考訳): MDENet:Malware Open-set Recognitionのためのマルチモーダルデュアル埋め込みネットワーク
- Authors: Jingcai Guo, Yuanyuan Xu, Wenchao Xu, Yufeng Zhan, Yuxia Sun, Song Guo
- Abstract要約: 本稿では,MDENetと呼ばれるマルチモーダルデュアルエンベッドネットワークを提案する。
また、以前提案した大規模マルウェアデータセットであるMAL-100をマルチモーダル特性で強化する。
- 参考スコア(独自算出の注目度): 17.027132477210092
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Malware open-set recognition (MOSR) aims at jointly classifying malware
samples from known families and detect the ones from novel unknown families,
respectively. Existing works mostly rely on a well-trained classifier
considering the predicted probabilities of each known family with a
threshold-based detection to achieve the MOSR. However, our observation reveals
that the feature distributions of malware samples are extremely similar to each
other even between known and unknown families. Thus the obtained classifier may
produce overly high probabilities of testing unknown samples toward known
families and degrade the model performance. In this paper, we propose the
Multi-modal Dual-Embedding Networks, dubbed MDENet, to take advantage of
comprehensive malware features (i.e., malware images and malware sentences)
from different modalities to enhance the diversity of malware feature space,
which is more representative and discriminative for down-stream recognition.
Last, to further guarantee the open-set recognition, we dually embed the fused
multi-modal representation into one primary space and an associated sub-space,
i.e., discriminative and exclusive spaces, with contrastive sampling and
rho-bounded enclosing sphere regularizations, which resort to classification
and detection, respectively. Moreover, we also enrich our previously proposed
large-scaled malware dataset MAL-100 with multi-modal characteristics and
contribute an improved version dubbed MAL-100+. Experimental results on the
widely used malware dataset Mailing and the proposed MAL-100+ demonstrate the
effectiveness of our method.
- Abstract(参考訳): マルウェアオープンセット認識(MOSR)は、既知の家族からマルウェアサンプルを共同で分類し、新しい未知の家族からマルウェアを検知することを目的としている。
既存の研究は主に、MOSRを達成するためのしきい値に基づく検出を持つ既知の各ファミリーの予測確率を考慮して、よく訓練された分類器に依存している。
しかし,本研究の結果から,マルウェアサンプルの特徴分布は未知の家族の間でも非常に類似していることが明らかとなった。
これにより、得られた分類器は、未知のサンプルを既知の家族に対して過度に高い確率でテストし、モデル性能を低下させることができる。
本稿では,マルチモーダル・デュアル・エンベディングネットワークであるmdenetを提案する。マルチモーダル・デュアルエンベディングネットワークは,異なるモダリティから包括的マルウェア機能(マルウェア画像やマルウェア文など)を活用し,ダウンストリーム認識に代表的かつ差別的なマルウェア特徴空間の多様性を高める。
最後に、オープンセット認識をさらに保証するために、融合されたマルチモーダル表現を1つの一次空間と関連する部分空間、すなわち識別的空間と排他的空間に、それぞれ分類と検出を行うrho-bounded enclosing sphere regularization(rho-bounded enclosing sphere regularization)とを二重に埋め込む。
さらに、以前提案した大規模マルウェアデータセットMAL-100をマルチモーダル特性で強化し、MAL-100+と呼ばれる改良版に貢献する。
広く使われているマルウェアデータセットMailingと提案したMAL-100+の実験結果から,本手法の有効性が示された。
関連論文リスト
- Confidence-aware multi-modality learning for eye disease screening [58.861421804458395]
眼疾患スクリーニングのための新しい多モード顕在核融合パイプラインを提案する。
モダリティごとに信頼度を測り、マルチモダリティ情報をエレガントに統合する。
パブリックデータセットと内部データセットの両方の実験結果は、我々のモデルが堅牢性に優れていることを示している。
論文 参考訳(メタデータ) (2024-05-28T13:27:30Z) - Deep Learning Fusion For Effective Malware Detection: Leveraging Visual Features [12.431734971186673]
本研究では,マルウェアの実行可能量の異なるモードで学習した畳み込みニューラルネットワークモデルを融合する能力について検討する。
我々は3種類の視覚的マルウェアを利用した新しいマルチモーダル融合アルゴリズムを提案している。
提案した戦略は、与えられたデータセット内のマルウェアを識別する際の検出レート1.00(0-1)である。
論文 参考訳(メタデータ) (2024-05-23T08:32:40Z) - Bayesian Learned Models Can Detect Adversarial Malware For Free [28.498994871579985]
対数訓練は有効な方法であるが、大規模データセットにスケールアップするには計算コストがかかる。
特にベイズ式はモデルパラメータの分布を捉えることができ、モデル性能を犠牲にすることなく不確実性を定量化することができる。
ベイズ学習法で不確実性を定量化することで、敵のマルウェアを防御できることがわかった。
論文 参考訳(メタデータ) (2024-03-27T07:16:48Z) - Exploring Diverse Representations for Open Set Recognition [51.39557024591446]
オープンセット認識(OSR)では、テスト中に未知のサンプルを拒絶しながら、クローズドセットに属するサンプルを分類する必要がある。
現在、生成モデルはOSRの差別モデルよりもよく機能している。
本稿では,多種多様な表現を識別的に学習するMulti-Expert Diverse Attention Fusion(MEDAF)を提案する。
論文 参考訳(メタデータ) (2024-01-12T11:40:22Z) - Unleashing Mask: Explore the Intrinsic Out-of-Distribution Detection
Capability [70.72426887518517]
Out-of-Distribution(OOD)検出は、機械学習モデルを現実世界のアプリケーションにデプロイする際に、セキュアAIの必須の側面である。
本稿では,IDデータを用いた学習モデルのOOD識別能力を復元する新しい手法であるUnleashing Maskを提案する。
本手法では, マスクを用いて記憶した非定型サンプルを抽出し, モデルを微調整するか, 導入したマスクでプルーする。
論文 参考訳(メタデータ) (2023-06-06T14:23:34Z) - CNS-Net: Conservative Novelty Synthesizing Network for Malware
Recognition in an Open-set Scenario [14.059646012441313]
マルウェアオープンセット認識(MOSR)という,既知の未知の未知のマルウェア群と未知の未知のマルウェア群の両方に対するマルウェア認識の課題について検討する。
本稿では,未知のマルウェア群を模倣するマルウェアインスタンスを保存的に合成する新しいモデルを提案する。
我々はまた、大規模なオープンセットマルウェアベンチマークデータセットの欠如を埋めるために、MAL-100という新しい大規模マルウェアデータセットを構築した。
論文 参考訳(メタデータ) (2023-05-02T07:31:42Z) - Reliable Multimodality Eye Disease Screening via Mixture of Student's t
Distributions [49.4545260500952]
眼疾患スクリーニングのための新しい多モード顕在核融合パイプラインEyeMoStについて紹介する。
本モデルでは,一様性に対する局所的不確実性と融合モードに対する大域的不確実性の両方を推定し,信頼性の高い分類結果を生成する。
パブリックデータセットと社内データセットの両方に関する実験結果から、我々のモデルは現在の手法よりも信頼性が高いことが判明した。
論文 参考訳(メタデータ) (2023-03-17T06:18:16Z) - Trusted Multi-View Classification with Dynamic Evidential Fusion [73.35990456162745]
信頼型マルチビュー分類(TMC)と呼ばれる新しいマルチビュー分類アルゴリズムを提案する。
TMCは、様々な視点をエビデンスレベルで動的に統合することで、マルチビュー学習のための新しいパラダイムを提供する。
理論的および実験的結果は、精度、堅牢性、信頼性において提案されたモデルの有効性を検証した。
論文 参考訳(メタデータ) (2022-04-25T03:48:49Z) - Task-Aware Meta Learning-based Siamese Neural Network for Classifying
Obfuscated Malware [5.293553970082943]
既存のマルウェア検出方法は、トレーニングデータセットに難読化されたマルウェアサンプルが存在する場合、異なるマルウェアファミリーを正しく分類できない。
そこで我々は,このような制御フロー難読化技術に対して耐性を持つ,タスク対応の複数ショット学習型サイメスニューラルネットワークを提案する。
提案手法は,同一のマルウェアファミリーに属するマルウェアサンプルを正しく分類し,ユニークなマルウェアシグネチャの認識に極めて有効である。
論文 参考訳(メタデータ) (2021-10-26T04:44:13Z) - Open Set Recognition with Conditional Probabilistic Generative Models [51.40872765917125]
オープンセット認識のための条件付き確率生成モデル(CPGM)を提案する。
CPGMは未知のサンプルを検出できるが、異なる潜在特徴を条件付きガウス分布に近似させることで、既知のクラスを分類できる。
複数のベンチマークデータセットの実験結果から,提案手法がベースラインを著しく上回ることがわかった。
論文 参考訳(メタデータ) (2020-08-12T06:23:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。