Mixed-Integer Optimal Control via Reinforcement Learning: A Case Study on Hybrid Electric Vehicle Energy Management
- URL: http://arxiv.org/abs/2305.01461v3
- Date: Fri, 31 May 2024 02:07:42 GMT
- Title: Mixed-Integer Optimal Control via Reinforcement Learning: A Case Study on Hybrid Electric Vehicle Energy Management
- Authors: Jinming Xu, Nasser Lashgarian Azad, Yuan Lin,
- Abstract summary: This paper proposes a novel hybrid-action reinforcement learning (HARL) algorithm, twin delayed deep deterministic actor-Q (TD3AQ) for optimal control problems.
TD3AQ combines the advantages of both actor-critic and Q-learning methods, and can handle the discrete and continuous action spaces simultaneously.
The proposed algorithm is evaluated on a plug-in hybrid electric vehicle (PHEV) energy management problem.
- Score: 2.0762193863564926
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Many optimal control problems require the simultaneous output of discrete and continuous control variables. These problems are usually formulated as mixed-integer optimal control (MIOC) problems, which are challenging to solve due to the complexity of the solution space. Numerical methods such as branch-and-bound are computationally expensive and undesirable for real-time control. This paper proposes a novel hybrid-action reinforcement learning (HARL) algorithm, twin delayed deep deterministic actor-Q (TD3AQ), for MIOC problems. TD3AQ combines the advantages of both actor-critic and Q-learning methods, and can handle the discrete and continuous action spaces simultaneously. The proposed algorithm is evaluated on a plug-in hybrid electric vehicle (PHEV) energy management problem, where real-time control of the discrete variables, clutch engagement/disengagement and gear shift, and continuous variable, engine torque, is essential to maximize fuel economy while satisfying driving constraints. Simulation outcomes demonstrate that TD3AQ achieves control results close to optimality when compared with dynamic programming (DP), with just 4.69% difference. Furthermore, it surpasses the performance of baseline reinforcement learning algorithms.
Related papers
- Harnessing the Power of Gradient-Based Simulations for Multi-Objective Optimization in Particle Accelerators [5.565261874218803]
This paper demonstrates the power of differentiability for solving MOO problems using a Deep Differentiable Reinforcement Learning algorithm in particle accelerators.
The underlying problem enforces strict constraints on both individual states and actions as well as cumulative (global) constraint for energy requirements of the beam.
arXiv Detail & Related papers (2024-11-07T15:55:05Z) - Communication-Control Codesign for Large-Scale Wireless Networked Control Systems [80.30532872347668]
Wireless Networked Control Systems (WNCSs) are essential to Industry 4.0, enabling flexible control in applications, such as drone swarms and autonomous robots.
We propose a practical WNCS model that captures correlated dynamics among multiple control loops with spatially distributed sensors and actuators sharing limited wireless resources over multi-state Markov block-fading channels.
We develop a Deep Reinforcement Learning (DRL) algorithm that efficiently handles the hybrid action space, captures communication-control correlations, and ensures robust training despite sparse cross-domain variables and floating control inputs.
arXiv Detail & Related papers (2024-10-15T06:28:21Z) - Growing Q-Networks: Solving Continuous Control Tasks with Adaptive Control Resolution [51.83951489847344]
In robotics applications, smooth control signals are commonly preferred to reduce system wear and energy efficiency.
In this work, we aim to bridge this performance gap by growing discrete action spaces from coarse to fine control resolution.
Our work indicates that an adaptive control resolution in combination with value decomposition yields simple critic-only algorithms that yield surprisingly strong performance on continuous control tasks.
arXiv Detail & Related papers (2024-04-05T17:58:37Z) - Integrating DeepRL with Robust Low-Level Control in Robotic Manipulators for Non-Repetitive Reaching Tasks [0.24578723416255746]
In robotics, contemporary strategies are learning-based, characterized by a complex black-box nature and a lack of interpretability.
We propose integrating a collision-free trajectory planner based on deep reinforcement learning (DRL) with a novel auto-tuning low-level control strategy.
arXiv Detail & Related papers (2024-02-04T15:54:03Z) - Multi-agent Deep Reinforcement Learning for Charge-sustaining Control of
Multi-mode Hybrid Vehicles [9.416703139663705]
Transportation electrification requires an increasing number of electric components on vehicles.
This paper focuses on the online optimization of energy management strategy for a multi-mode hybrid electric vehicle.
A new collaborative cyber-physical learning with multi-agents is proposed.
arXiv Detail & Related papers (2022-09-06T16:40:55Z) - Collaborative Intelligent Reflecting Surface Networks with Multi-Agent
Reinforcement Learning [63.83425382922157]
Intelligent reflecting surface (IRS) is envisioned to be widely applied in future wireless networks.
In this paper, we investigate a multi-user communication system assisted by cooperative IRS devices with the capability of energy harvesting.
arXiv Detail & Related papers (2022-03-26T20:37:14Z) - Learning Solution Manifolds for Control Problems via Energy Minimization [32.59818752168615]
A variety of control tasks are commonly formulated as energy minimization problems.
Numerical solutions to such problems are well-established, but are often too slow to be used directly in real-time applications.
We propose an alternative to behavioral cloning (BC) that is efficient and numerically robust.
arXiv Detail & Related papers (2022-03-07T14:28:57Z) - Comparative analysis of machine learning methods for active flow control [60.53767050487434]
Genetic Programming (GP) and Reinforcement Learning (RL) are gaining popularity in flow control.
This work presents a comparative analysis of the two, bench-marking some of their most representative algorithms against global optimization techniques.
arXiv Detail & Related papers (2022-02-23T18:11:19Z) - Continuous-Time Fitted Value Iteration for Robust Policies [93.25997466553929]
Solving the Hamilton-Jacobi-Bellman equation is important in many domains including control, robotics and economics.
We propose continuous fitted value iteration (cFVI) and robust fitted value iteration (rFVI)
These algorithms leverage the non-linear control-affine dynamics and separable state and action reward of many continuous control problems.
arXiv Detail & Related papers (2021-10-05T11:33:37Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
Security-constrained optimal power flow (SCOPF) is fundamental in power systems.
Modeling of APR within the SCOPF problem results in complex large-scale mixed-integer programs.
This paper proposes a novel approach that combines deep learning and robust optimization techniques.
arXiv Detail & Related papers (2020-07-14T12:38:21Z) - Continuous-Discrete Reinforcement Learning for Hybrid Control in
Robotics [21.823173895315605]
We propose to treat hybrid problems in their 'native' form by solving them with hybrid reinforcement learning.
In our experiments, we first demonstrate that the proposed approach efficiently solves such hybrid reinforcement learning problems.
We then show, both in simulation and on robotic hardware, the benefits of removing possibly imperfect expert-designeds.
arXiv Detail & Related papers (2020-01-02T14:19:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.