Harnessing the Power of Gradient-Based Simulations for Multi-Objective Optimization in Particle Accelerators
- URL: http://arxiv.org/abs/2411.04817v1
- Date: Thu, 07 Nov 2024 15:55:05 GMT
- Title: Harnessing the Power of Gradient-Based Simulations for Multi-Objective Optimization in Particle Accelerators
- Authors: Kishansingh Rajput, Malachi Schram, Auralee Edelen, Jonathan Colen, Armen Kasparian, Ryan Roussel, Adam Carpenter, He Zhang, Jay Benesch,
- Abstract summary: This paper demonstrates the power of differentiability for solving MOO problems using a Deep Differentiable Reinforcement Learning algorithm in particle accelerators.
The underlying problem enforces strict constraints on both individual states and actions as well as cumulative (global) constraint for energy requirements of the beam.
- Score: 5.565261874218803
- License:
- Abstract: Particle accelerator operation requires simultaneous optimization of multiple objectives. Multi-Objective Optimization (MOO) is particularly challenging due to trade-offs between the objectives. Evolutionary algorithms, such as genetic algorithm (GA), have been leveraged for many optimization problems, however, they do not apply to complex control problems by design. This paper demonstrates the power of differentiability for solving MOO problems using a Deep Differentiable Reinforcement Learning (DDRL) algorithm in particle accelerators. We compare DDRL algorithm with Model Free Reinforcement Learning (MFRL), GA and Bayesian Optimization (BO) for simultaneous optimization of heat load and trip rates in the Continuous Electron Beam Accelerator Facility (CEBAF). The underlying problem enforces strict constraints on both individual states and actions as well as cumulative (global) constraint for energy requirements of the beam. A physics-based surrogate model based on real data is developed. This surrogate model is differentiable and allows back-propagation of gradients. The results are evaluated in the form of a Pareto-front for two objectives. We show that the DDRL outperforms MFRL, BO, and GA on high dimensional problems.
Related papers
- Quantum algorithms for the variational optimization of correlated electronic states with stochastic reconfiguration and the linear method [0.0]
We present quantum algorithms for the variational optimization of wavefunctions correlated by products of unitary operators.
While an implementation on classical computing hardware would require exponentially growing compute cost, the cost (number of circuits and shots) of our quantum algorithms is in system size.
arXiv Detail & Related papers (2024-08-03T17:53:35Z) - Multiobjective Vehicle Routing Optimization with Time Windows: A Hybrid Approach Using Deep Reinforcement Learning and NSGA-II [52.083337333478674]
This paper proposes a weight-aware deep reinforcement learning (WADRL) approach designed to address the multiobjective vehicle routing problem with time windows (MOVRPTW)
The Non-dominated sorting genetic algorithm-II (NSGA-II) method is then employed to optimize the outcomes produced by the WADRL.
arXiv Detail & Related papers (2024-07-18T02:46:06Z) - Expensive Multi-Objective Bayesian Optimization Based on Diffusion Models [17.19004913553654]
Multi-objective Bayesian optimization (MOBO) has shown promising performance on various expensive multi-objective optimization problems (EMOPs)
We propose a novel Composite Diffusion Model based Pareto Set Learning algorithm, namely CDM-PSL, for expensive MOBO.
Our proposed algorithm attains superior performance compared with various state-of-the-art MOBO algorithms.
arXiv Detail & Related papers (2024-05-14T14:55:57Z) - Diffusion Model-Based Multiobjective Optimization for Gasoline Blending
Scheduling [30.040728803996256]
Gasoline blending scheduling uses resource allocation and operation sequencing to meet a refinery's production requirements.
The presence of nonlinearity, integer constraints, and a large number of decision variables adds complexity to this problem.
This paper introduces a novel multiobjective optimization approach driven by a diffusion model (named DMO)
arXiv Detail & Related papers (2024-02-04T05:46:28Z) - Federated Conditional Stochastic Optimization [110.513884892319]
Conditional optimization has found in a wide range of machine learning tasks, such as in-variant learning tasks, AUPRC, andAML.
This paper proposes algorithms for distributed federated learning.
arXiv Detail & Related papers (2023-10-04T01:47:37Z) - Robust Constrained Multi-objective Evolutionary Algorithm based on
Polynomial Chaos Expansion for Trajectory Optimization [0.0]
The proposed method rewrites a robust formulation into a deterministic problem via the PCE.
As a case study, the landing trajectory design of supersonic transport (SST) with wind uncertainty is optimized.
arXiv Detail & Related papers (2022-05-23T15:33:05Z) - Multi-Agent Deep Reinforcement Learning in Vehicular OCC [14.685237010856953]
We introduce a spectral efficiency optimization approach in vehicular OCC.
We model the optimization problem as a Markov decision process (MDP) to enable the use of solutions that can be applied online.
We verify the performance of our proposed scheme through extensive simulations and compare it with various variants of our approach and a random method.
arXiv Detail & Related papers (2022-05-05T14:25:54Z) - Optimization-Inspired Learning with Architecture Augmentations and
Control Mechanisms for Low-Level Vision [74.9260745577362]
This paper proposes a unified optimization-inspired learning framework to aggregate Generative, Discriminative, and Corrective (GDC) principles.
We construct three propagative modules to effectively solve the optimization models with flexible combinations.
Experiments across varied low-level vision tasks validate the efficacy and adaptability of GDC.
arXiv Detail & Related papers (2020-12-10T03:24:53Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisy hybrid quantum-classical algorithms are powerful tools to maximize the use of Noisy Intermediate Scale Quantum devices.
We propose a strategy for such ansatze used in variational quantum algorithms, which we call "Efficient Circuit Training" (PECT)
Instead of optimizing all of the ansatz parameters at once, PECT launches a sequence of variational algorithms.
arXiv Detail & Related papers (2020-10-01T18:14:11Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
Security-constrained optimal power flow (SCOPF) is fundamental in power systems.
Modeling of APR within the SCOPF problem results in complex large-scale mixed-integer programs.
This paper proposes a novel approach that combines deep learning and robust optimization techniques.
arXiv Detail & Related papers (2020-07-14T12:38:21Z) - EOS: a Parallel, Self-Adaptive, Multi-Population Evolutionary Algorithm
for Constrained Global Optimization [68.8204255655161]
EOS is a global optimization algorithm for constrained and unconstrained problems of real-valued variables.
It implements a number of improvements to the well-known Differential Evolution (DE) algorithm.
Results prove that EOSis capable of achieving increased performance compared to state-of-the-art single-population self-adaptive DE algorithms.
arXiv Detail & Related papers (2020-07-09T10:19:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.