Generative Meta-Learning for Zero-Shot Relation Triplet Extraction
- URL: http://arxiv.org/abs/2305.01920v1
- Date: Wed, 3 May 2023 06:34:39 GMT
- Title: Generative Meta-Learning for Zero-Shot Relation Triplet Extraction
- Authors: Wanli Li, Tieyun Qian
- Abstract summary: We propose a novel generative meta-learning framework to boost the generalization capability of generative models.
Specifically, we first design a task-aware generative model which can learn the general knowledge by forcing the optimization process to be conducted across multiple tasks.
Based on it, we then present three generative meta-learning approaches designated for three typical meta-learning categories.
- Score: 12.837901211741443
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The zero-shot relation triplet extraction (ZeroRTE) task aims to extract
relation triplets from a piece of text with unseen relation types. The seminal
work adopts the pre-trained generative model to generate synthetic samples for
new relations. However, current generative models lack the optimization process
of model generalization on different tasks during training, and thus have
limited generalization capability. For this reason, we propose a novel
generative meta-learning framework which exploits the `learning-to-learn'
ability of meta-learning to boost the generalization capability of generative
models. Specifically, we first design a task-aware generative model which can
learn the general knowledge by forcing the optimization process to be conducted
across multiple tasks. Based on it, we then present three generative
meta-learning approaches designated for three typical meta-learning categories.
Extensive experimental results demonstrate that our framework achieves a new
state-of-the-art performance for the ZeroRTE task.
Related papers
- Forewarned is Forearmed: Leveraging LLMs for Data Synthesis through Failure-Inducing Exploration [90.41908331897639]
Large language models (LLMs) have significantly benefited from training on diverse, high-quality task-specific data.
We present a novel approach, ReverseGen, designed to automatically generate effective training samples.
arXiv Detail & Related papers (2024-10-22T06:43:28Z) - Zero-shot Triplet Extraction by Template Infilling [13.295751492744081]
Triplet extraction aims to extract pairs of entities and their corresponding relations from unstructured text.
We show that by reducing triplet extraction to a template infilling task over a pre-trained language model (LM), we can equip the extraction model with zero-shot learning capabilities.
We propose a novel framework, ZETT, that aligns the task objective to the pre-training objective of generative transformers to generalize to unseen relations.
arXiv Detail & Related papers (2022-12-21T00:57:24Z) - PCRED: Zero-shot Relation Triplet Extraction with Potential Candidate
Relation Selection and Entity Boundary Detection [11.274924966891842]
Zero-shot relation triplet extraction (ZeroRTE) aims to extract relation triplets from unstructured texts.
Previous state-of-the-art method handles this challenging task by leveraging pretrained language models to generate data as additional training samples.
We tackle this task from a new perspective and propose a novel method named PCRED for ZeroRTE with Potential Candidate Relation selection and Entity boundary Detection.
arXiv Detail & Related papers (2022-11-26T04:27:31Z) - DORE: Document Ordered Relation Extraction based on Generative Framework [56.537386636819626]
This paper investigates the root cause of the underwhelming performance of the existing generative DocRE models.
We propose to generate a symbolic and ordered sequence from the relation matrix which is deterministic and easier for model to learn.
Experimental results on four datasets show that our proposed method can improve the performance of the generative DocRE models.
arXiv Detail & Related papers (2022-10-28T11:18:10Z) - Meta-Learning via Classifier(-free) Guidance [5.812784742024491]
State-of-the-art meta-learning techniques do not optimize for zero-shot adaptation to unseen tasks.
We propose meta-learning techniques that use natural language guidance to achieve higher zero-shot performance.
arXiv Detail & Related papers (2022-10-17T11:09:35Z) - Generalization Properties of Retrieval-based Models [50.35325326050263]
Retrieval-based machine learning methods have enjoyed success on a wide range of problems.
Despite growing literature showcasing the promise of these models, the theoretical underpinning for such models remains underexplored.
We present a formal treatment of retrieval-based models to characterize their generalization ability.
arXiv Detail & Related papers (2022-10-06T00:33:01Z) - A Generative Model for Relation Extraction and Classification [23.1277041729626]
We present a novel generative model for relation extraction and classification (which we call GREC)
We explore various encoding representations for the source and target sequences, and design effective schemes that enable GREC to achieve state-of-the-art performance on three benchmark RE datasets.
Our approach can be extended to extract all relation triples from a sentence in one pass.
arXiv Detail & Related papers (2022-02-26T21:17:18Z) - Improving Non-autoregressive Generation with Mixup Training [51.61038444990301]
We present a non-autoregressive generation model based on pre-trained transformer models.
We propose a simple and effective iterative training method called MIx Source and pseudo Target.
Our experiments on three generation benchmarks including question generation, summarization and paraphrase generation, show that the proposed framework achieves the new state-of-the-art results.
arXiv Detail & Related papers (2021-10-21T13:04:21Z) - KGPT: Knowledge-Grounded Pre-Training for Data-to-Text Generation [100.79870384880333]
We propose a knowledge-grounded pre-training (KGPT) to generate knowledge-enriched text.
We adopt three settings, namely fully-supervised, zero-shot, few-shot to evaluate its effectiveness.
Under zero-shot setting, our model achieves over 30 ROUGE-L on WebNLG while all other baselines fail.
arXiv Detail & Related papers (2020-10-05T19:59:05Z) - Contrastive Triple Extraction with Generative Transformer [72.21467482853232]
We introduce a novel model, contrastive triple extraction with a generative transformer.
Specifically, we introduce a single shared transformer module for encoder-decoder-based generation.
To generate faithful results, we propose a novel triplet contrastive training object.
arXiv Detail & Related papers (2020-09-14T05:29:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.