Learning from Teaching Regularization: Generalizable Correlations Should be Easy to Imitate
- URL: http://arxiv.org/abs/2402.02769v3
- Date: Thu, 31 Oct 2024 06:17:08 GMT
- Title: Learning from Teaching Regularization: Generalizable Correlations Should be Easy to Imitate
- Authors: Can Jin, Tong Che, Hongwu Peng, Yiyuan Li, Dimitris N. Metaxas, Marco Pavone,
- Abstract summary: Generalization remains a central challenge in machine learning.
We propose Learning from Teaching (LoT), a novel regularization technique for deep neural networks to enhance generalization.
LoT operationalizes this concept to improve the generalization of the main model with auxiliary student learners.
- Score: 40.5601980891318
- License:
- Abstract: Generalization remains a central challenge in machine learning. In this work, we propose Learning from Teaching (LoT), a novel regularization technique for deep neural networks to enhance generalization. Inspired by the human ability to capture concise and abstract patterns, we hypothesize that generalizable correlations are expected to be easier to imitate. LoT operationalizes this concept to improve the generalization of the main model with auxiliary student learners. The student learners are trained by the main model and, in turn, provide feedback to help the main model capture more generalizable and imitable correlations. Our experimental results across several domains, including Computer Vision, Natural Language Processing, and methodologies like Reinforcement Learning, demonstrate that the introduction of LoT brings significant benefits compared to training models on the original dataset. The results suggest the effectiveness and efficiency of LoT in identifying generalizable information at the right scales while discarding spurious data correlations, thus making LoT a valuable addition to current machine learning. Code is available at https://github.com/jincan333/LoT.
Related papers
- Data Augmentation for Sparse Multidimensional Learning Performance Data Using Generative AI [17.242331892899543]
Learning performance data describe correct and incorrect answers or problem-solving attempts in adaptive learning.
Learning performance data tend to be highly sparse (80%(sim)90% missing observations) in most real-world applications due to adaptive item selection.
This article proposes a systematic framework for augmenting learner data to address data sparsity in learning performance data.
arXiv Detail & Related papers (2024-09-24T00:25:07Z) - Leveraging Variation Theory in Counterfactual Data Augmentation for Optimized Active Learning [19.962212551963383]
Active Learning (AL) allows models to learn interactively from user feedback.
This paper introduces a counterfactual data augmentation approach to AL.
arXiv Detail & Related papers (2024-08-07T14:55:04Z) - AS-ES Learning: Towards Efficient CoT Learning in Small Models [35.225382243612174]
Chain-of-Thought (CoT) serves as a critical emerging ability in Large Language Models (LLMs)
We propose a new training paradigm AS-ES (Abstractive Segments - Extractive Segments) learning, which exploits the inherent information in CoT for iterative generation.
Experiments show that our methods surpass the direct seq2seq training on CoT-extensive tasks like MWP and PET summarization, without data augmentation or altering the model itself.
arXiv Detail & Related papers (2024-03-04T12:13:59Z) - Language models are weak learners [71.33837923104808]
We show that prompt-based large language models can operate effectively as weak learners.
We incorporate these models into a boosting approach, which can leverage the knowledge within the model to outperform traditional tree-based boosting.
Results illustrate the potential for prompt-based LLMs to function not just as few-shot learners themselves, but as components of larger machine learning pipelines.
arXiv Detail & Related papers (2023-06-25T02:39:19Z) - EfficientTrain: Exploring Generalized Curriculum Learning for Training
Visual Backbones [80.662250618795]
This paper presents a new curriculum learning approach for the efficient training of visual backbones (e.g., vision Transformers)
As an off-the-shelf method, it reduces the wall-time training cost of a wide variety of popular models by >1.5x on ImageNet-1K/22K without sacrificing accuracy.
arXiv Detail & Related papers (2022-11-17T17:38:55Z) - CCLF: A Contrastive-Curiosity-Driven Learning Framework for
Sample-Efficient Reinforcement Learning [56.20123080771364]
We develop a model-agnostic Contrastive-Curiosity-Driven Learning Framework (CCLF) for reinforcement learning.
CCLF fully exploit sample importance and improve learning efficiency in a self-supervised manner.
We evaluate this approach on the DeepMind Control Suite, Atari, and MiniGrid benchmarks.
arXiv Detail & Related papers (2022-05-02T14:42:05Z) - INFOrmation Prioritization through EmPOWERment in Visual Model-Based RL [90.06845886194235]
We propose a modified objective for model-based reinforcement learning (RL)
We integrate a term inspired by variational empowerment into a state-space model based on mutual information.
We evaluate the approach on a suite of vision-based robot control tasks with natural video backgrounds.
arXiv Detail & Related papers (2022-04-18T23:09:23Z) - Fractional Transfer Learning for Deep Model-Based Reinforcement Learning [0.966840768820136]
Reinforcement learning (RL) is well known for requiring large amounts of data in order for RL agents to learn to perform complex tasks.
Recent progress in model-based RL allows agents to be much more data-efficient.
We present a simple alternative approach: fractional transfer learning.
arXiv Detail & Related papers (2021-08-14T12:44:42Z) - Toward Understanding the Feature Learning Process of Self-supervised
Contrastive Learning [43.504548777955854]
We study how contrastive learning learns the feature representations for neural networks by analyzing its feature learning process.
We prove that contrastive learning using textbfReLU networks provably learns the desired sparse features if proper augmentations are adopted.
arXiv Detail & Related papers (2021-05-31T16:42:09Z) - Relation-Guided Representation Learning [53.60351496449232]
We propose a new representation learning method that explicitly models and leverages sample relations.
Our framework well preserves the relations between samples.
By seeking to embed samples into subspace, we show that our method can address the large-scale and out-of-sample problem.
arXiv Detail & Related papers (2020-07-11T10:57:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.