論文の概要: Single Image Deraining via Feature-based Deep Convolutional Neural
Network
- arxiv url: http://arxiv.org/abs/2305.02100v1
- Date: Wed, 3 May 2023 13:12:51 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-04 14:57:28.744619
- Title: Single Image Deraining via Feature-based Deep Convolutional Neural
Network
- Title(参考訳): 特徴量に基づく深部畳み込みニューラルネットワークによる単一画像推定
- Authors: Chaobing Zheng, Jun Jiang, Wenjian Ying, Shiqian Wu
- Abstract要約: データ駆動型アプローチとモデルベースアプローチを組み合わせた,単一画像デラミニングアルゴリズムを提案する。
実験の結果,提案アルゴリズムは質的,定量的両面で最先端の手法よりも優れていることがわかった。
- 参考スコア(独自算出の注目度): 13.39233717329633
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: It is challenging to remove rain-steaks from a single rainy image because the
rain steaks are spatially varying in the rainy image. Although the CNN based
methods have reported promising performance recently, there are still some
defects, such as data dependency and insufficient interpretation. A single
image deraining algorithm based on the combination of data-driven and
model-based approaches is proposed. Firstly, an improved weighted guided image
filter (iWGIF) is used to extract high-frequency information and learn the rain
steaks to avoid interference from other information through the input image.
Then, transfering the input image and rain steaks from the image domain to the
feature domain adaptively to learn useful features for high-quality image
deraining. Finally, networks with attention mechanisms is used to restore
high-quality images from the latent features. Experiments show that the
proposed algorithm significantly outperforms state-of-the-art methods in terms
of both qualitative and quantitative measures.
- Abstract(参考訳): 雨天ステーキは雨天像に空間的に変化するため、雨天像から雨天像を除去することは困難である。
CNNベースのメソッドは最近、有望なパフォーマンスを報告しているが、データ依存や不十分な解釈など、いくつかの欠陥がある。
データ駆動型アプローチとモデルベースアプローチの組み合わせに基づく単一の画像参照アルゴリズムを提案する。
まず、改良された重み付きガイド画像フィルタ(iWGIF)を用いて高周波情報を抽出し、レインステーキを学習し、入力画像を介して他の情報からの干渉を避ける。
そして、入力画像とレインステーキを画像領域から特徴領域に適応的に転送し、高品質な画像デライニングに有用な特徴を学習する。
最後に、注目機構を持つネットワークを用いて、潜在特徴から高品質な画像を復元する。
実験により,提案手法は定性的および定量的尺度の両面で最先端手法を有意に上回ることがわかった。
関連論文リスト
- Contrastive Learning Based Recursive Dynamic Multi-Scale Network for
Image Deraining [47.764883957379745]
雨のストリークは撮影画像の可視性を著しく低下させる。
既存のディープラーニングベースの画像デライニング手法では、手作業で構築されたネットワークを使用して、雨の降った画像から明確な画像への直接投影を学習する。
本稿では,雨天画像と澄んだ画像との相関関係を考察した,対照的な学習に基づく画像デライニング手法を提案する。
論文 参考訳(メタデータ) (2023-05-29T13:51:41Z) - Single Image Deraining via Rain-Steaks Aware Deep Convolutional Neural
Network [16.866000078306815]
雨天画像から高周波情報を抽出するために、改良された重み付きガイド画像フィルタ(iWGIF)を提案する。
高周波情報は主にレインステーキとノイズを含み、レインステーキが深い畳み込みニューラルネットワーク(RSADCNN)を認識してレインステーキに注意を払うように誘導することができる。
論文 参考訳(メタデータ) (2022-09-16T09:16:03Z) - SAPNet: Segmentation-Aware Progressive Network for Perceptual
Contrastive Deraining [2.615176171489612]
単一画像のデライニングのためのコントラスト学習に基づくセグメンテーション・アウェア・プログレッシブ・ネットワーク(SAPNet)を提案する。
本モデルでは,オブジェクト検出とセマンティックセマンティックセグメンテーションを高い精度で支援する。
論文 参考訳(メタデータ) (2021-11-17T03:57:11Z) - Structure-Preserving Deraining with Residue Channel Prior Guidance [33.41254475191555]
多くのハイレベルコンピュータビジョンタスクにおいて、単一画像のデアライニングが重要である。
RCP誘導を用いた構造保存評価ネットワーク(SPDNet)を提案する。
SPDNetは、RCPガイダンスの下で、明瞭で正確な構造を持つ高品質な無雨画像を直接生成する。
論文 参考訳(メタデータ) (2021-08-20T09:09:56Z) - RCDNet: An Interpretable Rain Convolutional Dictionary Network for
Single Image Deraining [49.99207211126791]
雨畳み込み辞書ネットワーク(RCDNet)と呼ばれる,新しい深層アーキテクチャを具体的に構築する。
RCDNetは雨害の本質的な先行を埋め込んでおり、明確な解釈性を持っている。
このような解釈可能なネットワークをエンドツーエンドにトレーニングすることにより、関連するすべてのレインカーネルと近位演算子を自動的に抽出することができる。
論文 参考訳(メタデータ) (2021-07-14T16:08:11Z) - From Rain Generation to Rain Removal [67.71728610434698]
雨層を生成物としてパラメータ化した雨画像のためのベイズ生成モデルを構築した。
降雨画像の統計的分布を推定するために,変分推論の枠組みを用いる。
総合的な実験により,提案モデルが複雑な降雨分布を忠実に抽出できることが確認された。
論文 参考訳(メタデータ) (2020-08-08T18:56:51Z) - Structural Residual Learning for Single Image Rain Removal [48.87977695398587]
本研究は,本質的な降雨構造を有するネットワークの出力残余を強制することで,新たなネットワークアーキテクチャを提案する。
このような構造的残差設定は、ネットワークによって抽出された雨層が、一般的な雨害の以前の知識に微妙に従うことを保証している。
論文 参考訳(メタデータ) (2020-05-19T05:52:13Z) - Conditional Variational Image Deraining [158.76814157115223]
キャラクタリゼーション性能向上のための条件変分画像レイニング(CVID)ネットワーク
本研究では,各画像の降雨密度マップを推定するための空間密度推定(SDE)モジュールを提案する。
合成および実世界のデータセットを用いた実験により,提案したCVIDネットワークは,画像のデライニングにおける従来の決定論的手法よりもはるかに優れた性能が得られることが示された。
論文 参考訳(メタデータ) (2020-04-23T11:51:38Z) - Physical Model Guided Deep Image Deraining [10.14977592107907]
降雨画像の劣化により、多くのコンピュータビジョンシステムが動作しないため、単一画像のデライン化は緊急の課題である。
本研究では, 物理モデルを用いた単一画像デライニングのための新しいネットワークを提案する。
論文 参考訳(メタデータ) (2020-03-30T07:08:13Z) - Multi-Scale Progressive Fusion Network for Single Image Deraining [84.0466298828417]
空気中の雨のストリークは、位置からカメラまでの距離が異なるため、様々なぼやけた度合いや解像度で現れる。
同様の降雨パターンは、雨像やマルチスケール(またはマルチレゾリューション)バージョンで見ることができる。
本研究では,入力画像のスケールと階層的な深部特徴の観点から,雨天のマルチスケール協調表現について検討する。
論文 参考訳(メタデータ) (2020-03-24T17:22:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。