論文の概要: Towards Being Parameter-Efficient: A Stratified Sparsely Activated
Transformer with Dynamic Capacity
- arxiv url: http://arxiv.org/abs/2305.02176v2
- Date: Sun, 22 Oct 2023 21:09:23 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-25 12:54:52.197154
- Title: Towards Being Parameter-Efficient: A Stratified Sparsely Activated
Transformer with Dynamic Capacity
- Title(参考訳): パラメータ効率を目指して:動的容量を持つ階層化スパース活性変圧器
- Authors: Haoran Xu, Maha Elbayad, Kenton Murray, Jean Maillard and Vedanuj
Goswami
- Abstract要約: Stratified Mixture of Experts (SMoE)モデルは、異なるトークンに動的キャパシティを割り当てることができる。
SMoEは、同じまたは少ないパラメータで複数の最先端MoEモデルより優れていることを示す。
- 参考スコア(独自算出の注目度): 37.04254056062765
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Mixture-of-experts (MoE) models that employ sparse activation have
demonstrated effectiveness in significantly increasing the number of parameters
while maintaining low computational requirements per token. However, recent
studies have established that MoE models are inherently parameter-inefficient
as the improvement in performance diminishes with an increasing number of
experts. We hypothesize this parameter inefficiency is a result of all experts
having equal capacity, which may not adequately meet the varying complexity
requirements of different tokens or tasks. In light of this, we propose
Stratified Mixture of Experts (SMoE) models, which feature a stratified
structure and can assign dynamic capacity to different tokens. We demonstrate
the effectiveness of SMoE on three multilingual machine translation benchmarks,
containing 4, 15, and 94 language pairs, respectively. We show that SMoE
outperforms multiple state-of-the-art MoE models with the same or fewer
parameters.
- Abstract(参考訳): スパースアクティベーションを用いたMixture-of-Experts (MoE)モデルはトークン当たりの計算要求を低く保ちながらパラメータ数を著しく増加させる効果を示した。
しかし、近年の研究では、moeモデルの性能向上が専門家の増加とともに減少するにつれて、本質的にパラメータ非効率であることが判明している。
このパラメータの非効率性は、同じキャパシティを持つすべての専門家が、異なるトークンやタスクのさまざまな複雑性要件を十分に満たしていないと仮定する。
そこで本稿では,階層化構造を特徴とし,異なるトークンに動的容量を割り当てるsmoe(stratified mixture of experts)モデルを提案する。
4, 15, 94の言語対を含む3つの多言語機械翻訳ベンチマークにおけるSMoEの有効性を示す。
SMoEは、同じまたは少ないパラメータで複数の最先端MoEモデルより優れていることを示す。
関連論文リスト
- Unchosen Experts Can Contribute Too: Unleashing MoE Models' Power by Self-Contrast [58.98411447739218]
Mixture-of-Experts (MoE) は、計算効率を保ちながら、モデルサイズをスケールするための顕著なアーキテクチャとして登場した。
本研究では,無声専門家を推論中に自己コントラスト的に活用する学習自由戦略である自己コントラスト混合(SCMoE)を提案する。
我々の手法は概念的には単純で計算量も軽量であり、グリージー復号法に比べて最小限の遅延を発生させる。
論文 参考訳(メタデータ) (2024-05-23T12:45:29Z) - Dynamic Mixture of Experts: An Auto-Tuning Approach for Efficient Transformer Models [4.109351791494196]
本稿では,トランスフォーマーに基づく基礎モデルのトレーニングと推論の効率を高めるために,DynMoE(Dynamic Mixture of Experts)技術を導入する。
DynMoEには、各トークンがアクティベートする専門家の数を自動的に決定できる新しいゲーティングメソッドが組み込まれている。
本研究は,視覚・言語タスクにおけるGMoEと視覚言語タスクにおけるMoE-LLaVAとの競合性能を比較検討した。
論文 参考訳(メタデータ) (2024-05-23T08:18:30Z) - Multi-Head Mixture-of-Experts [100.60556163597946]
MH-MoE(Multi-Head Mixture-of-Experts)を提案する。
MH-MoEは、他のSMoE最適化手法の実装と分離が容易であり、性能向上のために他のSMoEモデルとの統合が容易である。
論文 参考訳(メタデータ) (2024-04-23T13:47:09Z) - XMoE: Sparse Models with Fine-grained and Adaptive Expert Selection [30.687511115573038]
ツールは、スパースMoEモデルの有効性と効率を高めるために設計された新しいMoEである。
パフォーマンスを犠牲にすることなく、MoE層の計算負荷を50%以上削減しながら、モデルパフォーマンスを向上させることができる。
論文 参考訳(メタデータ) (2024-02-27T08:18:02Z) - Mixture-of-Expert Conformer for Streaming Multilingual ASR [33.14594179710925]
本稿では,マルチランガル・コンバータによるマルチランガル・コンバータを提案する。
提案したMoE層は、専門家の数が増加するにつれて、一定の数のパラメータを活性化することで効率的な推論を提供する。
提案したモデルを12言語で評価し,ベースラインよりも平均11.9%の相対的な改善を実現した。
論文 参考訳(メタデータ) (2023-05-25T02:16:32Z) - Parameter-Efficient Conformers via Sharing Sparsely-Gated Experts for
End-to-End Speech Recognition [17.73449206184214]
本稿では,スパースゲート型エキスパートの共有によるパラメータ効率の高いコンバータを提案する。
具体的には,コンバータブロックの容量を増大させることなく,スパースゲート・オブ・エグゼクティブ(MoE)を用いて,コンバータブロックの容量を拡大する。
論文 参考訳(メタデータ) (2022-09-17T13:22:19Z) - Parameter-Efficient Mixture-of-Experts Architecture for Pre-trained
Language Models [68.9288651177564]
量子多体物理学から行列積演算子(MPO)に基づく新しいMoEアーキテクチャを提案する。
分解されたMPO構造により、元のMoEアーキテクチャのパラメータを減らすことができる。
GPT2に基づく3つの有名な下流自然言語データセットの実験は、モデルキャパシティの向上における性能と効率の向上を示している。
論文 参考訳(メタデータ) (2022-03-02T13:44:49Z) - Sparse MoEs meet Efficient Ensembles [49.313497379189315]
このようなモデルの2つの一般的なクラス、すなわちニューラルネットワークのアンサンブルと専門家のスパースミックス(スパースMoE)の相互作用について研究する。
Efficient Ensemble of Experts (E$3$)は、両モデルのクラスを最大限に活用するスケーラブルでシンプルなMoEのアンサンブルであり、深いアンサンブルよりも最大45%少ないFLOPを使用する。
論文 参考訳(メタデータ) (2021-10-07T11:58:35Z) - MoEfication: Conditional Computation of Transformer Models for Efficient
Inference [66.56994436947441]
トランスフォーマーベースの事前学習言語モデルは、パラメータ容量が大きいため、ほとんどのNLPタスクにおいて優れた性能を実現することができるが、計算コストも大きい。
スパースアクティベーション現象に基づく条件計算により,大規模モデル推論を高速化する。
そこで本研究では,モデルサイズが等しいMoE(Mix-of-experts)バージョン,すなわちMoEficationに変換することを提案する。
論文 参考訳(メタデータ) (2021-10-05T02:14:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。