論文の概要: Parameter-Efficient Sparsity Crafting from Dense to Mixture-of-Experts for Instruction Tuning on General Tasks
- arxiv url: http://arxiv.org/abs/2401.02731v4
- Date: Tue, 24 Sep 2024 14:14:40 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-09 05:28:28.171903
- Title: Parameter-Efficient Sparsity Crafting from Dense to Mixture-of-Experts for Instruction Tuning on General Tasks
- Title(参考訳): 一般課題における教示学習のための高密度から混成実験へのパラメータ効率な疎結合工法
- Authors: Haoyuan Wu, Haisheng Zheng, Zhuolun He, Bei Yu,
- Abstract要約: パラメータ効率のスペシャリティクラフト (PESC) を導入する。
PESCは、Mix-of-experts (MoE)アーキテクチャを使って、密集したモデルをスパースモデルに加工する。
我々の最良スパースモデルは他のスパースモデルよりも優れ、GP3.5に比べて優れた一般性を示す。
- 参考スコア(独自算出の注目度): 5.536630285985836
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) have demonstrated considerable proficiency in general natural language processing (NLP) tasks. Instruction tuning, a successful paradigm, enhances the ability of LLMs to follow natural language instructions and exhibit robust generalization across general tasks. However, these models often encounter performance limitations across multiple tasks due to constrained model capacity. Expanding this capacity during the instruction tuning phase poses significant challenges. To address this issue, we introduce parameter-efficient sparsity crafting (PESC), which crafts dense models into sparse models using the mixture-of-experts (MoE) architecture. PESC integrates adapters into the MoE layers of sparse models, differentiating experts without altering the individual weights within these layers. This method significantly reduces computational costs and GPU memory requirements, facilitating model capacity expansion through a minimal parameter increase when guaranteeing the quality of approximation in function space compared to original sparse upcycling. Our empirical evaluation demonstrates the effectiveness of the PESC method. Using PESC during instruction tuning, our best sparse model outperforms other sparse and dense models and exhibits superior general capabilities compared to GPT-3.5. Our code is available at https://github.com/wuhy68/Parameter-Efficient-MoE.
- Abstract(参考訳): 大規模言語モデル (LLM) は、自然言語処理(NLP)のタスクにおいて、かなりの習熟性を示している。
成功しているパラダイムであるインストラクションチューニングは、LLMが自然言語命令に従う能力を高め、一般的なタスクにまたがる堅牢な一般化を示す。
しかしながら、モデルキャパシティの制約により、これらのモデルは複数のタスクにまたがるパフォーマンスの制限に直面することが多い。
命令チューニングフェーズでこの能力を拡張することは、大きな課題となる。
この問題に対処するために,パラメータ効率のスペシャリティ工法 (PESC) を導入し,Mix-of-experts (MoE) アーキテクチャを用いて高密度モデルをスパースモデルに加工する。
PESCは、アダプタをスパースモデルのMoE層に統合し、これらの層内の個々の重みを変更することなく専門家を差別化する。
この方法は計算コストとGPUメモリの要求を大幅に削減し、元のスパースアップサイクルと比較して関数空間における近似の質を保証する際に、最小パラメータ増加によるモデルの容量拡張を容易にする。
実験により,PESC法の有効性が示された。
命令チューニング中にPESCを用いることで、最も優れたスパースモデルが他のスパースモデルよりも優れ、GPT-3.5に比べて優れた汎用性を示す。
私たちのコードはhttps://github.com/wuhy68/Parameter-Efficient-MoEで公開されています。
関連論文リスト
- Retraining-Free Merging of Sparse Mixture-of-Experts via Hierarchical Clustering [14.858134039539697]
疎活性化型エキスパート混合(HC-SMoE)のための階層クラスタリングを提案する。
HC-SMoEはタスクに依存しないエキスパートマージフレームワークで、再トレーニングせずにSMoEモデルのパラメータを削減できる。
我々は8つのゼロショット言語タスクに関する広範な実験を通じてアプローチを検証するとともに、QwenやMixtralといった大規模SMoEモデルにおいてその効果を実証する。
論文 参考訳(メタデータ) (2024-10-11T07:36:14Z) - Reference Trustable Decoding: A Training-Free Augmentation Paradigm for Large Language Models [79.41139393080736]
大規模言語モデル(LLM)は急速に進歩し、印象的な機能を示している。
In-Context Learning (ICL) など。
効率的なファインチューニング(PEFT)は、現在2つの主要な拡張方法である。
下流タスクへのLLM。
我々は、モデルが微調整なしで新しいタスクに迅速に適応できるパラダイムである参照信頼復号(RTD)を提案する。
論文 参考訳(メタデータ) (2024-09-30T10:48:20Z) - Revisiting SMoE Language Models by Evaluating Inefficiencies with Task Specific Expert Pruning [78.72226641279863]
SMOE(Sparse Mixture of Expert)モデルは、言語モデリングにおける高密度モデルに代わるスケーラブルな代替品として登場した。
本研究は,SMoEアーキテクチャの設計に関する意思決定を行うために,タスク固有のモデルプルーニングについて検討する。
適応型タスク対応プルーニング手法 UNCURL を導入し,MoE 層当たりの専門家数をオフラインで学習する手法を提案する。
論文 参考訳(メタデータ) (2024-09-02T22:35:03Z) - Pruning Large Language Models with Semi-Structural Adaptive Sparse Training [17.381160429641316]
適応スパーストレーナー(AST)と呼ばれるリトレーニングによる半構造化スパースモデルのプルーニングパイプラインを提案する。
ASTは、モデルがトレーニングプロセスを通して適応的にマスクを選択することを可能にし、マスキング重みに減衰を施すことにより、密度の高いモデルをスパースモデルに変換する。
本研究は,半構造化されたスパース言語モデルの実現可能性を示し,高度に圧縮されたモデルを実現するための新しい手法を提案する。
論文 参考訳(メタデータ) (2024-07-30T06:33:44Z) - SPP: Sparsity-Preserved Parameter-Efficient Fine-Tuning for Large Language Models [53.638791265113625]
空間保存型大規模言語モデルのための効率的な微調整法
コードはhttps://github.com/Lucky-Lance/SPP.comで公開される。
論文 参考訳(メタデータ) (2024-05-25T04:55:27Z) - XMoE: Sparse Models with Fine-grained and Adaptive Expert Selection [30.687511115573038]
ツールは、スパースMoEモデルの有効性と効率を高めるために設計された新しいMoEである。
パフォーマンスを犠牲にすることなく、MoE層の計算負荷を50%以上削減しながら、モデルパフォーマンスを向上させることができる。
論文 参考訳(メタデータ) (2024-02-27T08:18:02Z) - Not All Experts are Equal: Efficient Expert Pruning and Skipping for Mixture-of-Experts Large Language Models [90.14693869269519]
MoE LLMはより少ないパラメータで高いパフォーマンスを実現することができるが、パラメータサイズが大きいためデプロイは困難である。
本稿では主に,プラグ・アンド・プレイ・エキスパートレベルのスペーシフィケーション技術を導入することで,MoE LLMの展開効率を向上させることを目的としている。
論文 参考訳(メタデータ) (2024-02-22T18:56:07Z) - Retrieval-based Knowledge Transfer: An Effective Approach for Extreme
Large Language Model Compression [64.07696663255155]
大規模事前学習型言語モデル(LLM)は、様々な自然言語処理(NLP)タスクにおいて例外的な性能を示した。
しかし、これらのモデルの巨大なサイズは、現実世界のアプリケーションに展開する上で大きな課題をもたらします。
本稿では,LLMの知識を極めて小規模なモデルに効果的に伝達するRetrieval-based Knowledge Transfer (RetriKT)と呼ばれる新しい圧縮パラダイムを提案する。
論文 参考訳(メタデータ) (2023-10-24T07:58:20Z) - Scaling Pre-trained Language Models to Deeper via Parameter-efficient
Architecture [68.13678918660872]
行列積演算子(MPO)に基づくより有能なパラメータ共有アーキテクチャを設計する。
MPO分解はパラメータ行列の情報を再編成し、2つの部分に分解することができる。
私たちのアーキテクチャは、モデルのサイズを減らすために、すべてのレイヤで中央テンソルを共有しています。
論文 参考訳(メタデータ) (2023-03-27T02:34:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。