Quantum Inspired Optimization for Industrial Scale Problems
- URL: http://arxiv.org/abs/2305.02179v1
- Date: Wed, 3 May 2023 15:19:36 GMT
- Title: Quantum Inspired Optimization for Industrial Scale Problems
- Authors: William P. Banner, Shima Bab Hadiashar, Grzegorz Mazur, Tim Menke,
Marcin Ziolkowski, Ken Kennedy, Jhonathan Romero, Yudong Cao, Jeffrey A.
Grover, William D. Oliver
- Abstract summary: We use a quantum-inspired model-based optimization method TN-GEO to assess the efficacy of these quantum-inspired methods when applied to realistic problems.
In this case, the problem of interest is the optimization of a realistic assembly line based on BMW's currently utilized manufacturing schedule.
Through a comparison of optimization techniques, we found that quantum-inspired model-based optimization, when combined with conventional black-box methods, can find lower-cost solutions in certain contexts.
- Score: 0.5417521241272644
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Model-based optimization, in concert with conventional black-box methods, can
quickly solve large-scale combinatorial problems. Recently, quantum-inspired
modeling schemes based on tensor networks have been developed which have the
potential to better identify and represent correlations in datasets. Here, we
use a quantum-inspired model-based optimization method TN-GEO to assess the
efficacy of these quantum-inspired methods when applied to realistic problems.
In this case, the problem of interest is the optimization of a realistic
assembly line based on BMW's currently utilized manufacturing schedule. Through
a comparison of optimization techniques, we found that quantum-inspired
model-based optimization, when combined with conventional black-box methods,
can find lower-cost solutions in certain contexts.
Related papers
- A coherent approach to quantum-classical optimization [0.0]
Hybrid quantum-classical optimization techniques have been shown to allow for the reduction of quantum computational resources.
We identify the coherence entropy as a crucial metric in determining the suitability of quantum states.
We propose a quantum-classical optimization protocol that significantly improves on previous approaches for such tasks.
arXiv Detail & Related papers (2024-09-20T22:22:53Z) - Learning Joint Models of Prediction and Optimization [56.04498536842065]
Predict-Then-Then framework uses machine learning models to predict unknown parameters of an optimization problem from features before solving.
This paper proposes an alternative method, in which optimal solutions are learned directly from the observable features by joint predictive models.
arXiv Detail & Related papers (2024-09-07T19:52:14Z) - Quantum-Enhanced Simulation-Based Optimization for Newsvendor Problems [5.500172106704342]
We exploit the enhanced efficiency of Quantum Amplitude Estimation (QAE) compared to classical Monte Carlo simulation.
In this work, we make use of a quantum-enhanced algorithm for simulation-based optimization and apply it to solve a variant of the classical News problem known to be NP-hard.
arXiv Detail & Related papers (2024-03-26T05:14:50Z) - An Empirical Evaluation of Zeroth-Order Optimization Methods on
AI-driven Molecule Optimization [78.36413169647408]
We study the effectiveness of various ZO optimization methods for optimizing molecular objectives.
We show the advantages of ZO sign-based gradient descent (ZO-signGD)
We demonstrate the potential effectiveness of ZO optimization methods on widely used benchmark tasks from the Guacamol suite.
arXiv Detail & Related papers (2022-10-27T01:58:10Z) - Socio-cognitive Optimization of Time-delay Control Problems using
Evolutionary Metaheuristics [89.24951036534168]
Metaheuristics are universal optimization algorithms which should be used for solving difficult problems, unsolvable by classic approaches.
In this paper we aim at constructing novel socio-cognitive metaheuristic based on castes, and apply several versions of this algorithm to optimization of time-delay system model.
arXiv Detail & Related papers (2022-10-23T22:21:10Z) - Evaluating the Convergence of Tabu Enhanced Hybrid Quantum Optimization [58.720142291102135]
We introduce the Tabu Enhanced Hybrid Quantum Optimization metaheuristic approach useful for optimization problem solving on a quantum hardware.
We address the theoretical convergence of the proposed scheme from the viewpoint of the collisions in the object which stores the tabu states, based on the Ising model.
arXiv Detail & Related papers (2022-09-05T07:23:03Z) - Tree ensemble kernels for Bayesian optimization with known constraints
over mixed-feature spaces [54.58348769621782]
Tree ensembles can be well-suited for black-box optimization tasks such as algorithm tuning and neural architecture search.
Two well-known challenges in using tree ensembles for black-box optimization are (i) effectively quantifying model uncertainty for exploration and (ii) optimizing over the piece-wise constant acquisition function.
Our framework performs as well as state-of-the-art methods for unconstrained black-box optimization over continuous/discrete features and outperforms competing methods for problems combining mixed-variable feature spaces and known input constraints.
arXiv Detail & Related papers (2022-07-02T16:59:37Z) - Variational quantum algorithm for unconstrained black box binary
optimization: Application to feature selection [1.9182522142368683]
We introduce a variational quantum algorithm to solve unconstrained black box binary problems.
This is in contrast to the typical setting of quantum algorithms for optimization.
We show that the quantum method produces competitive and in certain aspects even better performance than traditional feature selection techniques.
arXiv Detail & Related papers (2022-05-06T07:02:15Z) - Surrogate-based optimization for variational quantum algorithms [0.0]
Variational quantum algorithms are a class of techniques intended to be used on near-term quantum computers.
We introduce the idea of learning surrogate models for variational circuits using few experimental measurements.
We then perform parameter optimization using these models as opposed to the original data.
arXiv Detail & Related papers (2022-04-12T00:15:17Z) - Quantum variational optimization: The role of entanglement and problem
hardness [0.0]
We study the role of entanglement, the structure of the variational quantum circuit, and the structure of the optimization problem.
Our numerical results indicate an advantage in adapting the distribution of entangling gates to the problem's topology.
We find evidence that applying conditional value at risk type cost functions improves the optimization, increasing the probability of overlap with the optimal solutions.
arXiv Detail & Related papers (2021-03-26T14:06:54Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
Hybrid quantum-classical algorithms such as Quantum Approximate Optimization Algorithm (QAOA) are considered as one of the most encouraging approaches for taking advantage of near-term quantum computers in practical applications.
Such algorithms are usually implemented in a variational form, combining a classical optimization method with a quantum machine to find good solutions to an optimization problem.
In this study we apply a Cross-Entropy method to shape this landscape, which allows the classical parameter to find better parameters more easily and hence results in an improved performance.
arXiv Detail & Related papers (2020-03-11T13:52:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.