論文の概要: Distributed Leader Follower Formation Control of Mobile Robots based on
Bioinspired Neural Dynamics and Adaptive Sliding Innovation Filter
- arxiv url: http://arxiv.org/abs/2305.02288v1
- Date: Wed, 3 May 2023 17:29:46 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-04 13:47:25.641794
- Title: Distributed Leader Follower Formation Control of Mobile Robots based on
Bioinspired Neural Dynamics and Adaptive Sliding Innovation Filter
- Title(参考訳): バイオインスパイアされたニューラルダイナミクスと適応スライディングイノベーションフィルタに基づく移動ロボットの分散リーダフォロワ生成制御
- Authors: Zhe Xu, Tao Yan, Simon X. Yang, S. Andrew Gadsden
- Abstract要約: バイオインスパイアされた神経力学に基づくバックステッピングとスライディングモード制御ハイブリッド形成制御法を提案する。
提案した制御戦略は,従来のバックステッピング設計に存在する非現実的な速度ジャンプ問題を解決する。
提案手法の有効性と有効性を示すため,複数のシミュレーションを行った。
- 参考スコア(独自算出の注目度): 14.66072990853587
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper investigated the distributed leader follower formation control
problem for multiple differentially driven mobile robots. A distributed
estimator is first introduced and it only requires the state information from
each follower itself and its neighbors. Then, we propose a bioinspired neural
dynamic based backstepping and sliding mode control hybrid formation control
method with proof of its stability. The proposed control strategy resolves the
impractical speed jump issue that exists in the conventional backstepping
design. Additionally, considering the system and measurement noises, the
proposed control strategy not only removes the chattering issue existing in the
conventional sliding mode control but also provides smooth control input with
extra robustness. After that, an adaptive sliding innovation filter is
integrated with the proposed control to provide accurate state estimates that
are robust to modeling uncertainties. Finally, we performed multiple
simulations to demonstrate the efficiency and effectiveness of the proposed
formation control strategy.
- Abstract(参考訳): 本稿では,複数の微分駆動型移動ロボットにおける分散リーダフォロワ形成制御問題について検討した。
分散推定器が最初に導入され、各フォロワーとその隣人からの状態情報のみを必要とする。
そこで本研究では,バイオインスパイアされた神経力学に基づくバックステッピングとスライディングモード制御ハイブリッド生成制御法を提案する。
提案する制御戦略は従来のバックステッピング設計に存在する非実用的なスピードジャンプ問題を解決する。
さらに,システムと計測ノイズを考慮した制御手法では,従来のスライディングモード制御における解答問題を除去するだけでなく,より堅牢なスムーズな制御入力を提供する。
その後、適応型スライディングイノベーションフィルタを提案制御と統合し、不確かさのモデル化にロバストな正確な状態推定を行う。
最後に,提案手法の有効性と有効性を示すため,複数のシミュレーションを行った。
関連論文リスト
- Distributed Robust Learning based Formation Control of Mobile Robots based on Bioinspired Neural Dynamics [14.149584412213269]
まず,変数構造とカスケード設計手法を用いた分散推定器を導入し,実時間性能向上のための微分情報の必要性を排除した。
そして、スムーズな制御入力を提供し、スピードジャンプ問題を効果的に解決することを目的とした、バイオインスパイアされたニューラルダイナミックベースのアプローチを用いて、キネマティックトラッキング制御法を開発した。
完全に未知の力学と乱れを持つロボットの課題に対処するために,学習に基づく頑健な動的コントローラを開発した。
論文 参考訳(メタデータ) (2024-03-23T04:36:12Z) - Distributed Robust Learning-Based Backstepping Control Aided with
Neurodynamics for Consensus Formation Tracking of Underwater Vessels [14.660236097277638]
本稿では,複数の水中船のコンセンサス生成追跡のための分散ロバスト学習に基づく制御について述べる。
海洋船舶のシステムパラメータは完全に未知であり、モデリングミスマッチ、海洋障害、騒音にさらされていると推定されている。
論文 参考訳(メタデータ) (2023-08-18T05:45:13Z) - Tuning Legged Locomotion Controllers via Safe Bayesian Optimization [47.87675010450171]
本稿では,ロボットハードウェアプラットフォームにおけるモデルベースコントローラの展開を効率化するための,データ駆動型戦略を提案する。
モデルフリーな安全な学習アルゴリズムを用いて制御ゲインのチューニングを自動化し、制御定式化で使用される単純化されたモデルと実システムとのミスマッチに対処する。
論文 参考訳(メタデータ) (2023-06-12T13:10:14Z) - In-Distribution Barrier Functions: Self-Supervised Policy Filters that
Avoid Out-of-Distribution States [84.24300005271185]
本稿では,任意の参照ポリシーをラップした制御フィルタを提案する。
本手法は、トップダウンとエゴセントリックの両方のビュー設定を含むシミュレーション環境における2つの異なるビズモータ制御タスクに有効である。
論文 参考訳(メタデータ) (2023-01-27T22:28:19Z) - A Hybrid Tracking Control Strategy for an Unmanned Underwater Vehicle
Aided with Bioinspired Neural Dynamics [14.66072990853587]
本稿では,バイオインスパイアされたニューラルダイナミクスモデルに基づく無人水中車両(UUV)のハイブリッド制御手法を提案する。
急激な速度ジャンプを回避し、スムーズな速度コマンドを提供するため、バックステッピング・キネマティック・コントロール・ストラテジーを改良した。
そこで,スムーズかつ連続的なトルク制御が可能なスライディングモード制御を提案する。
論文 参考訳(メタデータ) (2022-09-03T19:18:54Z) - Neural optimal feedback control with local learning rules [67.5926699124528]
運動制御の大きな問題は、脳がどのように遅延と雑音の刺激に直面して適切な動きを計画し実行するかを理解することである。
本稿では,適応カルマンフィルタとモデル自由制御手法を組み合わせた新しいオンラインアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-11-12T20:02:00Z) - Sparsity in Partially Controllable Linear Systems [56.142264865866636]
本研究では, 部分制御可能な線形力学系について, 基礎となる空間パターンを用いて検討する。
最適制御には無関係な状態変数を特徴付ける。
論文 参考訳(メタデータ) (2021-10-12T16:41:47Z) - Learning-based vs Model-free Adaptive Control of a MAV under Wind Gust [0.2770822269241973]
未知の条件下でのナビゲーション問題は、制御分野において最も重要でよく研究されている問題の一つである。
近年のモデルフリー適応制御法は, センサフィードバックから直接植物の物理的特性を学習することにより, この依存を除去することを目的としている。
提案手法は,深い強化学習フレームワークによって頑健に調整された完全状態フィードバックコントローラからなる,概念的にシンプルな学習ベースアプローチを提案する。
論文 参考訳(メタデータ) (2021-01-29T10:13:56Z) - Gaussian Process-based Min-norm Stabilizing Controller for
Control-Affine Systems with Uncertain Input Effects and Dynamics [90.81186513537777]
本稿では,この問題の制御・アフィン特性を捉えた新しい化合物カーネルを提案する。
この結果の最適化問題は凸であることを示し、ガウス過程に基づく制御リャプノフ関数第二次コーンプログラム(GP-CLF-SOCP)と呼ぶ。
論文 参考訳(メタデータ) (2020-11-14T01:27:32Z) - Model-Reference Reinforcement Learning Control of Autonomous Surface
Vehicles with Uncertainties [1.7033108359337459]
提案した制御は,従来の制御手法と深層強化学習を組み合わせたものである。
強化学習により,不確かさのモデリングを補うための制御法を直接学習することができる。
従来の深層強化学習法と比較して,提案した学習に基づく制御は安定性を保証し,サンプル効率を向上することができる。
論文 参考訳(メタデータ) (2020-03-30T22:02:13Z) - Adaptive Control and Regret Minimization in Linear Quadratic Gaussian
(LQG) Setting [91.43582419264763]
我々は不確実性に直面した楽観主義の原理に基づく新しい強化学習アルゴリズムLqgOptを提案する。
LqgOptはシステムのダイナミクスを効率的に探索し、モデルのパラメータを信頼区間まで推定し、最も楽観的なモデルのコントローラをデプロイする。
論文 参考訳(メタデータ) (2020-03-12T19:56:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。