論文の概要: Tackling Universal Properties of Minimal Trap Spaces of Boolean Networks
- arxiv url: http://arxiv.org/abs/2305.02442v2
- Date: Thu, 20 Jul 2023 12:47:06 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-21 18:08:07.652220
- Title: Tackling Universal Properties of Minimal Trap Spaces of Boolean Networks
- Title(参考訳): ブールネットワークの最小トラップ空間の普遍的性質に取り組む
- Authors: Sara Riva, Jean-Marie Lagniez, Gustavo Maga\~na L\'opez, Lo\"ic
Paulev\'e
- Abstract要約: 最小トラップ空間(MTS)はブール力学が捕捉される部分空間をキャプチャする。
MTSの普遍性に関する論理的推論を2つの問題の範囲で解決する。
本稿では,これらの問題を効率的に解くために,CEGAR(Counter-Example Guided Refinement Abstraction)を導入する。
- 参考スコア(独自算出の注目度): 7.621862131380908
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Minimal trap spaces (MTSs) capture subspaces in which the Boolean dynamics is
trapped, whatever the update mode. They correspond to the attractors of the
most permissive mode. Due to their versatility, the computation of MTSs has
recently gained traction, essentially by focusing on their enumeration. In this
paper, we address the logical reasoning on universal properties of MTSs in the
scope of two problems: the reprogramming of Boolean networks for identifying
the permanent freeze of Boolean variables that enforce a given property on all
the MTSs, and the synthesis of Boolean networks from universal properties on
their MTSs. Both problems reduce to solving the satisfiability of quantified
propositional logic formula with 3 levels of quantifiers
($\exists\forall\exists$). In this paper, we introduce a Counter-Example Guided
Refinement Abstraction (CEGAR) to efficiently solve these problems by coupling
the resolution of two simpler formulas. We provide a prototype relying on
Answer-Set Programming for each formula and show its tractability on a wide
range of Boolean models of biological networks.
- Abstract(参考訳): 最小トラップ空間(MTS)は、更新モードによらず、ブールダイナミクスが閉じ込められている部分空間をキャプチャする。
それらは最も寛容なモードの誘引者に対応する。
汎用性のため、MSSの計算は、本質的には列挙に焦点をあてることで、近年牽引力を高めている。
本稿では, MTS の普遍性に関する論理的推論を, MTS 上の任意の性質を強制する Boolean 変数の永久凍結を識別するための Boolean ネットワークの再プログラミングと, MTS 上の普遍性から Boolean ネットワークを合成する,という2つの問題の範囲内で解決する。
どちらの問題も、量化命題論理式を3段階の量化子(\exists\forall\exists$)で満たすことができる。
本稿では,2つの簡単な公式の解法を結合することにより,これらの問題を効率的に解くための逆例誘導改良抽象化(cegar)を提案する。
式ごとに解集合プログラミングを頼りにし、生物ネットワークの幅広いブールモデルにその扱い可能性を示すプロトタイプを提供する。
関連論文リスト
- SimBa: Simplicity Bias for Scaling Up Parameters in Deep Reinforcement Learning [49.83621156017321]
SimBaは、単純さのバイアスを注入することによって、深いRLでパラメータをスケールアップするように設計されたアーキテクチャである。
SimBaでパラメータをスケールアップすることで、オフポリシー、オンポリシー、アン教師なしメソッドを含む様々なディープRLアルゴリズムのサンプル効率が一貫して改善される。
論文 参考訳(メタデータ) (2024-10-13T07:20:53Z) - Exact full-RSB SAT/UNSAT transition in infinitely wide two-layer neural networks [0.0]
我々は,典型的な状態の重なり合いの有無にかかわらず,グラディエントDescentはキャパシティに到達できないことを示す。
この発見は勾配に基づくアルゴリズムが極めて非定型な状態に偏っていることを示唆している。
論文 参考訳(メタデータ) (2024-10-09T09:41:28Z) - CWF: Consolidating Weak Features in High-quality Mesh Simplification [50.634070540791555]
これらの要件をすべて同時に検討するスムーズな機能を提案する。
この官能基は、通常の異方性項と、セトロイド型ボロノイテッセルレーション(CVT)エネルギー項を含む。
論文 参考訳(メタデータ) (2024-04-24T05:37:17Z) - LogicMP: A Neuro-symbolic Approach for Encoding First-order Logic Constraints [42.16663204729038]
本稿では,MLN上で平均場変動推定を行う新しいニューラルネットワーク層LogicMPを提案する。
モジュール性と効率を保ちながら、FOLCをエンコードするために、市販のニューラルネットワークにプラグインすることができる。
グラフ、画像、テキストの3種類のタスクを経験した結果、LogicMPは、パフォーマンスと効率の両面で、先進的な競合より優れています。
論文 参考訳(メタデータ) (2023-09-27T07:52:30Z) - Sparse Modular Activation for Efficient Sequence Modeling [94.11125833685583]
線形状態空間モデルと自己アテンション機構を組み合わせた最近のモデルでは、様々なシーケンスモデリングタスクにおいて顕著な結果が示されている。
現在のアプローチでは、アテンションモジュールを静的かつ均一に入力シーケンスのすべての要素に適用し、最適以下の品質効率のトレードオフをもたらす。
SMA(Sparse Modular Activation)は,ニューラルネットワークが配列要素のサブモジュールを異なる方法でスパースに活性化する機構である。
論文 参考訳(メタデータ) (2023-06-19T23:10:02Z) - Marker and source-marker reprogramming of Most Permissive Boolean
networks and ensembles with BoNesis [0.0]
本稿では,BoNesisソフトウェアを用いて,その固定点とアトラクタの特性を強制する摂動の組み合わせを徹底的に同定する方法について述べる。
マーカー再プログラミング問題の4つの変種について検討する: 固定点の再プログラミング、最小のトラップ空間、および与えられた初期設定から最も許容される更新モードで到達可能な最小のトラップ空間。
いずれの場合も、理論計算の複雑さに上限を与え、BoNesis Pythonフレームワークを使った解決法の実装を与える。
論文 参考訳(メタデータ) (2022-07-27T05:31:47Z) - SeqTR: A Simple yet Universal Network for Visual Grounding [88.03253818868204]
本稿では,視覚的接地作業のためのシンプルな汎用ネットワークSeqTRを提案する。
画像とテキストの入力を条件とした点予測問題として,視覚的グラウンドリングを行った。
このパラダイムの下では、視覚的なグラウンドタスクはタスク固有のブランチやヘッドなしでSeqTRネットワークに統合されます。
論文 参考訳(メタデータ) (2022-03-30T12:52:46Z) - Statistically Meaningful Approximation: a Case Study on Approximating
Turing Machines with Transformers [50.85524803885483]
本研究は,統計的学習性を示すために近似ネットワークを必要とする統計有意(SM)近似の形式的定義を提案する。
回路とチューリングマシンの2つの機能クラスに対するSM近似について検討する。
論文 参考訳(メタデータ) (2021-07-28T04:28:55Z) - Representation Theorem for Matrix Product States [1.7894377200944511]
本稿では, 行列積状態(MPS)の普遍的表現能力について, 関数と連続関数の観点から検討する。
任意のゲートに対して対応するMPS構造の構築方法を提供することにより、MPSが任意の機能を正確に実現できることを示した。
我々は,MPSとニューラルネットワークの関係について検討し,スケール不変なシグモダル関数を持つMPSが一層ニューラルネットワークと等価であることを示す。
論文 参考訳(メタデータ) (2021-03-15T11:06:54Z) - Understanding Self-supervised Learning with Dual Deep Networks [74.92916579635336]
本稿では,2組の深層ReLUネットワークを用いたコントラスト型自己教師学習(SSL)手法を理解するための新しい枠組みを提案する。
種々の損失関数を持つSimCLRの各SGD更新において、各層の重みは共分散演算子によって更新されることを示す。
共分散演算子の役割と、そのようなプロセスでどのような特徴が学習されるかをさらに研究するために、我々は、階層的潜在木モデル(HLTM)を用いて、データ生成および増大過程をモデル化する。
論文 参考訳(メタデータ) (2020-10-01T17:51:49Z) - At-Most-One Constraints in Efficient Representations of Mutex Networks [15.99072005190786]
At-Most-One (AMO) 制約は、TRUEにセットされるブール変数の集合から少なくとも1つの変数を必要とする濃度制約の特別なケースである。
様々なエンコーディングを用いたAMO制約で表されるミューテックスネットワークにおけるSATベースの問題解決の比較を示す。
論文 参考訳(メタデータ) (2020-06-10T17:21:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。