Meta-Learning Enabled Score-Based Generative Model for 1.5T-Like Image
Reconstruction from 0.5T MRI
- URL: http://arxiv.org/abs/2305.02509v1
- Date: Thu, 4 May 2023 02:40:42 GMT
- Title: Meta-Learning Enabled Score-Based Generative Model for 1.5T-Like Image
Reconstruction from 0.5T MRI
- Authors: Zhuo-Xu Cui, Congcong Liu, Chentao Cao, Yuanyuan Liu, Jing Cheng,
Qingyong Zhu, Yanjie Zhu, Haifeng Wang, Dong Liang
- Abstract summary: We introduce a novel meta-learning approach that employs a teacher-student mechanism.
An optimal-transport-driven teacher learns the degradation process from high-field to low-field MR images.
Then, a score-based student solves the inverse problem of reconstructing a high-field-like MR image from a low-field MRI.
- Score: 22.024215676838185
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Magnetic resonance imaging (MRI) is known to have reduced signal-to-noise
ratios (SNR) at lower field strengths, leading to signal degradation when
producing a low-field MRI image from a high-field one. Therefore,
reconstructing a high-field-like image from a low-field MRI is a complex
problem due to the ill-posed nature of the task. Additionally, obtaining paired
low-field and high-field MR images is often not practical. We theoretically
uncovered that the combination of these challenges renders conventional deep
learning methods that directly learn the mapping from a low-field MR image to a
high-field MR image unsuitable. To overcome these challenges, we introduce a
novel meta-learning approach that employs a teacher-student mechanism. Firstly,
an optimal-transport-driven teacher learns the degradation process from
high-field to low-field MR images and generates pseudo-paired high-field and
low-field MRI images. Then, a score-based student solves the inverse problem of
reconstructing a high-field-like MR image from a low-field MRI within the
framework of iterative regularization, by learning the joint distribution of
pseudo-paired images to act as a regularizer. Experimental results on real
low-field MRI data demonstrate that our proposed method outperforms
state-of-the-art unpaired learning methods.
Related papers
- NeuroPictor: Refining fMRI-to-Image Reconstruction via Multi-individual Pretraining and Multi-level Modulation [55.51412454263856]
This paper proposes to directly modulate the generation process of diffusion models using fMRI signals.
By training with about 67,000 fMRI-image pairs from various individuals, our model enjoys superior fMRI-to-image decoding capacity.
arXiv Detail & Related papers (2024-03-27T02:42:52Z) - Volumetric Reconstruction Resolves Off-Resonance Artifacts in Static and
Dynamic PROPELLER MRI [76.60362295758596]
Off-resonance artifacts in magnetic resonance imaging (MRI) are visual distortions that occur when the actual resonant frequencies of spins within the imaging volume differ from the expected frequencies used to encode spatial information.
We propose to resolve these artifacts by lifting the 2D MRI reconstruction problem to 3D, introducing an additional "spectral" dimension to model this off-resonance.
arXiv Detail & Related papers (2023-11-22T05:44:51Z) - Denoising Simulated Low-Field MRI (70mT) using Denoising Autoencoders
(DAE) and Cycle-Consistent Generative Adversarial Networks (Cycle-GAN) [68.8204255655161]
Cycle Consistent Generative Adversarial Network (GAN) is implemented to yield high-field, high resolution, high signal-to-noise ratio (SNR) Magnetic Resonance Imaging (MRI) images.
Images were utilized to train a Denoising Autoencoder (DAE) and a Cycle-GAN, with paired and unpaired cases.
This work demonstrates the use of a generative deep learning model that can outperform classical DAEs to improve low-field MRI images and does not require image pairs.
arXiv Detail & Related papers (2023-07-12T00:01:00Z) - Low-field magnetic resonance image enhancement via stochastic image
quality transfer [5.0300525464861385]
Low-field (1T) magnetic resonance imaging (MRI) scanners remain in widespread use in low- and middle-income countries (LMICs)
Low-field MR images commonly have lower resolution and poorer contrast than images from high field (1.5T, 3T, and above)
Here, we present Image Quality Transfer (IQT) to enhance low-field structural MRI by estimating from a low-field image the image we would have obtained from the same subject at high field.
arXiv Detail & Related papers (2023-04-26T08:52:29Z) - A scan-specific unsupervised method for parallel MRI reconstruction via
implicit neural representation [9.388253054229155]
implicit neural representation (INR) has emerged as a new deep learning paradigm for learning the internal continuity of an object.
The proposed method outperforms existing methods by suppressing the aliasing artifacts and noise.
The high-quality results and scanning specificity make the proposed method hold the potential for further accelerating the data acquisition of parallel MRI.
arXiv Detail & Related papers (2022-10-19T10:16:03Z) - Model-Guided Multi-Contrast Deep Unfolding Network for MRI
Super-resolution Reconstruction [68.80715727288514]
We show how to unfold an iterative MGDUN algorithm into a novel model-guided deep unfolding network by taking the MRI observation matrix.
In this paper, we propose a novel Model-Guided interpretable Deep Unfolding Network (MGDUN) for medical image SR reconstruction.
arXiv Detail & Related papers (2022-09-15T03:58:30Z) - ERNAS: An Evolutionary Neural Architecture Search for Magnetic Resonance
Image Reconstructions [0.688204255655161]
A popular approach to accelerated MRI is to undersample the k-space data.
While undersampling speeds up the scan procedure, it generates artifacts in the images, and advanced reconstruction algorithms are needed to produce artifact-free images.
In this work, MRI reconstruction from undersampled data was carried out using an optimized neural network using a novel evolutionary neural architecture search algorithm.
arXiv Detail & Related papers (2022-06-15T03:42:18Z) - Adaptive Gradient Balancing for UndersampledMRI Reconstruction and
Image-to-Image Translation [60.663499381212425]
We enhance the image quality by using a Wasserstein Generative Adversarial Network combined with a novel Adaptive Gradient Balancing technique.
In MRI, our method minimizes artifacts, while maintaining a high-quality reconstruction that produces sharper images than other techniques.
arXiv Detail & Related papers (2021-04-05T13:05:22Z) - Fine-grained MRI Reconstruction using Attentive Selection Generative
Adversarial Networks [0.0]
We propose a novel attention-based deep learning framework to provide high-quality MRI reconstruction.
We incorporate large-field contextual feature integration and attention selection in a generative adversarial network (GAN) framework.
arXiv Detail & Related papers (2021-03-13T09:58:32Z) - ShuffleUNet: Super resolution of diffusion-weighted MRIs using deep
learning [47.68307909984442]
Single Image Super-Resolution (SISR) is a technique aimed to obtain high-resolution (HR) details from one single low-resolution input image.
Deep learning extracts prior knowledge from big datasets and produces superior MRI images from the low-resolution counterparts.
arXiv Detail & Related papers (2021-02-25T14:52:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.