Pretext Task Adversarial Learning for Unpaired Low-field to Ultra High-field MRI Synthesis
- URL: http://arxiv.org/abs/2503.05339v1
- Date: Fri, 07 Mar 2025 11:28:55 GMT
- Title: Pretext Task Adversarial Learning for Unpaired Low-field to Ultra High-field MRI Synthesis
- Authors: Zhenxuan Zhang, Peiyuan Jing, Coraline Beitone, Jiahao Huang, Zhifan Gao, Guang Yang, Pete Lally,
- Abstract summary: Low-field MRI often suffers from a reduced signal-to-noise ratio (SNR) and spatial resolution compared to high-field MRI.<n>We propose a Pretext Task Adversarial (PTA) learning framework for high-field MRI synthesis from low-field MRI data.
- Score: 5.998097558786736
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Given the scarcity and cost of high-field MRI, the synthesis of high-field MRI from low-field MRI holds significant potential when there is limited data for training downstream tasks (e.g. segmentation). Low-field MRI often suffers from a reduced signal-to-noise ratio (SNR) and spatial resolution compared to high-field MRI. However, synthesizing high-field MRI data presents challenges. These involve aligning image features across domains while preserving anatomical accuracy and enhancing fine details. To address these challenges, we propose a Pretext Task Adversarial (PTA) learning framework for high-field MRI synthesis from low-field MRI data. The framework comprises three processes: (1) The slice-wise gap perception (SGP) network aligns the slice inconsistencies of low-field and high-field datasets based on contrastive learning. (2) The local structure correction (LSC) network extracts local structures by restoring the locally rotated and masked images. (3) The pretext task-guided adversarial training process introduces additional supervision and incorporates a discriminator to improve image realism. Extensive experiments on low-field to ultra high-field task demonstrate the effectiveness of our method, achieving state-of-the-art performance (16.892 in FID, 1.933 in IS, and 0.324 in MS-SSIM). This enables the generation of high-quality high-field-like MRI data from low-field MRI data to augment training datasets for downstream tasks. The code is available at: https://github.com/Zhenxuan-Zhang/PTA4Unpaired_HF_MRI_SYN.
Related papers
- ZECO: ZeroFusion Guided 3D MRI Conditional Generation [11.645873358288648]
ZECO is a ZeroFusion guided 3D MRI conditional generation framework.
It extracts, compresses, and generates high-fidelity MRI images with corresponding 3D segmentation masks.
ZECO outperforms state-of-the-art models in both quantitative and qualitative evaluations on Brain MRI datasets.
arXiv Detail & Related papers (2025-03-24T00:04:52Z) - MR imaging in the low-field: Leveraging the power of machine learning [1.9565398064443327]
Low-field and ultra-low-field MRI offer advantages such as lower power consumption, reduced specific absorption rate, reduced field-inhomogeneities, and cost-effectiveness.<n>However, low-field MRI faces inherent challenges like reduced signal-to-noise ratio and therefore, potentially lower spatial resolution or longer scan times.<n>This chapter examines the challenges and opportunities of low-field and ultra-low-field MRI, with a focus on the role of machine learning (ML) in overcoming these limitations.
arXiv Detail & Related papers (2025-01-28T15:06:47Z) - ContextMRI: Enhancing Compressed Sensing MRI through Metadata Conditioning [51.26601171361753]
We propose ContextMRI, a text-conditioned diffusion model for MRI that integrates granular metadata into the reconstruction process.<n>We show that increasing the fidelity of metadata, ranging from slice location and contrast to patient age, sex, and pathology, systematically boosts reconstruction performance.
arXiv Detail & Related papers (2025-01-08T05:15:43Z) - NeuroPictor: Refining fMRI-to-Image Reconstruction via Multi-individual Pretraining and Multi-level Modulation [55.51412454263856]
This paper proposes to directly modulate the generation process of diffusion models using fMRI signals.
By training with about 67,000 fMRI-image pairs from various individuals, our model enjoys superior fMRI-to-image decoding capacity.
arXiv Detail & Related papers (2024-03-27T02:42:52Z) - DiffCMR: Fast Cardiac MRI Reconstruction with Diffusion Probabilistic
Models [11.068359534951783]
DiffCMR perceives conditioning signals from the under-sampled MRI image slice and generates its corresponding fully-sampled MRI image slice.
We validate DiffCMR with cine reconstruction and T1/T2 mapping tasks on MICCAI 2023 Cardiac MRI Reconstruction Challenge dataset.
Results show that our method achieves state-of-the-art performance, exceeding previous methods by a significant margin.
arXiv Detail & Related papers (2023-12-08T06:11:21Z) - Volumetric Reconstruction Resolves Off-Resonance Artifacts in Static and
Dynamic PROPELLER MRI [76.60362295758596]
Off-resonance artifacts in magnetic resonance imaging (MRI) are visual distortions that occur when the actual resonant frequencies of spins within the imaging volume differ from the expected frequencies used to encode spatial information.
We propose to resolve these artifacts by lifting the 2D MRI reconstruction problem to 3D, introducing an additional "spectral" dimension to model this off-resonance.
arXiv Detail & Related papers (2023-11-22T05:44:51Z) - CMRxRecon: An open cardiac MRI dataset for the competition of
accelerated image reconstruction [62.61209705638161]
There has been growing interest in deep learning-based CMR imaging algorithms.
Deep learning methods require large training datasets.
This dataset includes multi-contrast, multi-view, multi-slice and multi-coil CMR imaging data from 300 subjects.
arXiv Detail & Related papers (2023-09-19T15:14:42Z) - Meta-Learning Enabled Score-Based Generative Model for 1.5T-Like Image
Reconstruction from 0.5T MRI [22.024215676838185]
We introduce a novel meta-learning approach that employs a teacher-student mechanism.
An optimal-transport-driven teacher learns the degradation process from high-field to low-field MR images.
Then, a score-based student solves the inverse problem of reconstructing a high-field-like MR image from a low-field MRI.
arXiv Detail & Related papers (2023-05-04T02:40:42Z) - Synthetic Low-Field MRI Super-Resolution Via Nested U-Net Architecture [0.0]
The aim of this paper is to improve the SNR and overall image quality of low-field MRI scans to improve diagnostic capability.
We propose a Nested U-Net neural network architecture super-resolution algorithm that outperforms previously suggested deep learning methods with an average PSNR of 78.83 and SSIM of 0.9551.
arXiv Detail & Related papers (2022-11-28T04:09:21Z) - Data and Physics Driven Learning Models for Fast MRI -- Fundamentals and
Methodologies from CNN, GAN to Attention and Transformers [72.047680167969]
This article aims to introduce the deep learning based data driven techniques for fast MRI including convolutional neural network and generative adversarial network based methods.
We will detail the research in coupling physics and data driven models for MRI acceleration.
Finally, we will demonstrate through a few clinical applications, explain the importance of data harmonisation and explainable models for such fast MRI techniques in multicentre and multi-scanner studies.
arXiv Detail & Related papers (2022-04-01T22:48:08Z) - ShuffleUNet: Super resolution of diffusion-weighted MRIs using deep
learning [47.68307909984442]
Single Image Super-Resolution (SISR) is a technique aimed to obtain high-resolution (HR) details from one single low-resolution input image.
Deep learning extracts prior knowledge from big datasets and produces superior MRI images from the low-resolution counterparts.
arXiv Detail & Related papers (2021-02-25T14:52:23Z) - MRI Super-Resolution with GAN and 3D Multi-Level DenseNet: Smaller,
Faster, and Better [16.65044022241517]
High-resolution (HR) magnetic resonance imaging (MRI) provides detailed anatomical information critical for diagnosis in the clinical application.
HR MRI typically comes at the cost of long scan time, small spatial coverage, and low signal-to-noise ratio (SNR)
Recent studies showed that with a deep convolutional neural network (CNN), HR generic images could be recovered from low-resolution (LR) inputs via single image super-resolution (SISR) approaches.
arXiv Detail & Related papers (2020-03-02T22:07:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.