Unsupervised Domain Adaptation for Neuron Membrane Segmentation based on
Structural Features
- URL: http://arxiv.org/abs/2305.02569v1
- Date: Thu, 4 May 2023 05:55:19 GMT
- Title: Unsupervised Domain Adaptation for Neuron Membrane Segmentation based on
Structural Features
- Authors: Yuxiang An, Dongnan Liu, Weidong Cai
- Abstract summary: We propose to improve the performance of unsupervised domain adaptation (UDA) methods on cross-domain neuron membrane segmentation in EM images.
First, we designed a feature weight module considering the structural features during adaptation.
Second, we introduced a structural feature-based super-resolution approach to alleviating the domain gap by adjusting the cross-domain image resolutions.
- Score: 16.594977729459774
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: AI-enhanced segmentation of neuronal boundaries in electron microscopy (EM)
images is crucial for automatic and accurate neuroinformatics studies. To
enhance the limited generalization ability of typical deep learning frameworks
for medical image analysis, unsupervised domain adaptation (UDA) methods have
been applied. In this work, we propose to improve the performance of UDA
methods on cross-domain neuron membrane segmentation in EM images. First, we
designed a feature weight module considering the structural features during
adaptation. Second, we introduced a structural feature-based super-resolution
approach to alleviating the domain gap by adjusting the cross-domain image
resolutions. Third, we proposed an orthogonal decomposition module to
facilitate the extraction of domain-invariant features. Extensive experiments
on two domain adaptive membrane segmentation applications have indicated the
effectiveness of our method.
Related papers
- Adaptive Feature Fusion Neural Network for Glaucoma Segmentation on Unseen Fundus Images [13.03504366061946]
We propose a method named Adaptive Feature-fusion Neural Network (AFNN) for glaucoma segmentation on unseen domains.
The domain adaptor helps the pretrained-model fast adapt from other image domains to the medical fundus image domain.
Our proposed method achieves a competitive performance over existing fundus segmentation methods on four public glaucoma datasets.
arXiv Detail & Related papers (2024-04-02T16:30:12Z) - Learning to Generalize over Subpartitions for Heterogeneity-aware Domain
Adaptive Nuclei Segmentation [8.303040737608173]
Two-stage disentanglement framework is proposed to acquire domain-invariant feature representations at both image and instance levels.
We propose a dual-branch nucleus shape and structure preserving module to prevent nucleus over-generation and deformation in the synthesized images.
arXiv Detail & Related papers (2024-01-17T01:37:17Z) - Domain-Adaptive Learning: Unsupervised Adaptation for Histology Images
with Improved Loss Function Combination [3.004632712148892]
This paper presents a novel approach for unsupervised domain adaptation (UDA) targeting H&E stained histology images.
Our approach proposes a novel loss function along with carefully selected existing loss functions tailored to address the challenges specific to histology images.
The proposed method is extensively evaluated in accuracy, robustness, and generalization, surpassing state-of-the-art techniques for histology images.
arXiv Detail & Related papers (2023-09-29T12:11:16Z) - SMC-UDA: Structure-Modal Constraint for Unsupervised Cross-Domain Renal
Segmentation [100.86339246424541]
We propose a novel Structure-Modal Constrained (SMC) UDA framework based on a discriminative paradigm and introduce edge structure as a bridge between domains.
With the structure-constrained self-learning and progressive ROI, our methods segment the kidney by locating the 3D spatial structure of the edge.
experiments show that our proposed SMC-UDA has a strong generalization and outperforms generative UDA methods.
arXiv Detail & Related papers (2023-06-14T02:57:23Z) - PiPa: Pixel- and Patch-wise Self-supervised Learning for Domain
Adaptative Semantic Segmentation [100.6343963798169]
Unsupervised Domain Adaptation (UDA) aims to enhance the generalization of the learned model to other domains.
We propose a unified pixel- and patch-wise self-supervised learning framework, called PiPa, for domain adaptive semantic segmentation.
arXiv Detail & Related papers (2022-11-14T18:31:24Z) - Cross-Modality Brain Tumor Segmentation via Bidirectional
Global-to-Local Unsupervised Domain Adaptation [61.01704175938995]
In this paper, we propose a novel Bidirectional Global-to-Local (BiGL) adaptation framework under a UDA scheme.
Specifically, a bidirectional image synthesis and segmentation module is proposed to segment the brain tumor.
The proposed method outperforms several state-of-the-art unsupervised domain adaptation methods by a large margin.
arXiv Detail & Related papers (2021-05-17T10:11:45Z) - Shape-aware Meta-learning for Generalizing Prostate MRI Segmentation to
Unseen Domains [68.73614619875814]
We present a novel shape-aware meta-learning scheme to improve the model generalization in prostate MRI segmentation.
Experimental results show that our approach outperforms many state-of-the-art generalization methods consistently across all six settings of unseen domains.
arXiv Detail & Related papers (2020-07-04T07:56:02Z) - Unsupervised Instance Segmentation in Microscopy Images via Panoptic
Domain Adaptation and Task Re-weighting [86.33696045574692]
We propose a Cycle Consistency Panoptic Domain Adaptive Mask R-CNN (CyC-PDAM) architecture for unsupervised nuclei segmentation in histopathology images.
We first propose a nuclei inpainting mechanism to remove the auxiliary generated objects in the synthesized images.
Secondly, a semantic branch with a domain discriminator is designed to achieve panoptic-level domain adaptation.
arXiv Detail & Related papers (2020-05-05T11:08:26Z) - Unsupervised Bidirectional Cross-Modality Adaptation via Deeply
Synergistic Image and Feature Alignment for Medical Image Segmentation [73.84166499988443]
We present a novel unsupervised domain adaptation framework, named as Synergistic Image and Feature Alignment (SIFA)
Our proposed SIFA conducts synergistic alignment of domains from both image and feature perspectives.
Experimental results on two different tasks demonstrate that our SIFA method is effective in improving segmentation performance on unlabeled target images.
arXiv Detail & Related papers (2020-02-06T13:49:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.