論文の概要: Edge-aware Consistent Stereo Video Depth Estimation
- arxiv url: http://arxiv.org/abs/2305.02645v1
- Date: Thu, 4 May 2023 08:30:04 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-05 16:30:25.963855
- Title: Edge-aware Consistent Stereo Video Depth Estimation
- Title(参考訳): エッジアウェア型ステレオビデオ深度推定
- Authors: Elena Kosheleva, Sunil Jaiswal, Faranak Shamsafar, Noshaba Cheema,
Klaus Illgner-Fehns, Philipp Slusallek
- Abstract要約: 本稿では,高密度映像深度推定のための一貫した手法を提案する。
既存のモノラルな方法とは異なり、ステレオビデオに関係しています。
エッジ対応ステレオビデオモデルにより,深度マップを精度良く推定できることを示す。
- 参考スコア(独自算出の注目度): 3.611754783778107
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Video depth estimation is crucial in various applications, such as scene
reconstruction and augmented reality. In contrast to the naive method of
estimating depths from images, a more sophisticated approach uses temporal
information, thereby eliminating flickering and geometrical inconsistencies. We
propose a consistent method for dense video depth estimation; however, unlike
the existing monocular methods, ours relates to stereo videos. This technique
overcomes the limitations arising from the monocular input. As a benefit of
using stereo inputs, a left-right consistency loss is introduced to improve the
performance. Besides, we use SLAM-based camera pose estimation in the process.
To address the problem of depth blurriness during test-time training (TTT), we
present an edge-preserving loss function that improves the visibility of fine
details while preserving geometrical consistency. We show that our edge-aware
stereo video model can accurately estimate the dense depth maps.
- Abstract(参考訳): 映像深度推定はシーン再構成や拡張現実といった様々な応用において重要である。
画像から深度を推定するナイーブな手法とは対照的に、より洗練されたアプローチは時間的情報を使い、ひねりや幾何学的矛盾を取り除く。
ビデオ深度推定のための一貫した手法を提案するが、既存の単分子法とは異なり、ステレオビデオに関係している。
この手法は単眼入力から生じる制限を克服する。
ステレオ入力の利点として、性能を改善するために左右の整合性損失が導入された。
また、SLAMベースのカメラのポーズ推定も行っている。
テストタイムトレーニング(TTT)における深度ぼかし問題に対処するため,幾何的整合性を維持しながら細部視認性を向上するエッジ保存損失関数を提案する。
エッジ対応ステレオビデオモデルにより,深度マップを精度良く推定できることを示す。
関連論文リスト
- Pixel-Aligned Multi-View Generation with Depth Guided Decoder [86.1813201212539]
画素レベルの画像・マルチビュー生成のための新しい手法を提案する。
従来の作業とは異なり、潜伏映像拡散モデルのVAEデコーダにマルチビュー画像にアテンション層を組み込む。
本モデルにより,マルチビュー画像間の画素アライメントが向上する。
論文 参考訳(メタデータ) (2024-08-26T04:56:41Z) - Learning Temporally Consistent Video Depth from Video Diffusion Priors [57.929828486615605]
本研究は,映像深度推定の課題に対処する。
我々は予測タスクを条件付き生成問題に再構成する。
これにより、既存のビデオ生成モデルに埋め込まれた事前の知識を活用することができる。
論文 参考訳(メタデータ) (2024-06-03T16:20:24Z) - SDGE: Stereo Guided Depth Estimation for 360$^\circ$ Camera Sets [65.64958606221069]
マルチカメラシステムは、360ドル周の知覚を達成するために、しばしば自律走行に使用される。
360ドル(約3万3000円)のカメラセットは、しばしば制限または低品質のオーバーラップ領域を持ち、画像全体に対してマルチビューステレオメソッドを実現する。
重なりの重なりに多視点ステレオ結果を明示的に利用することにより、全画像の深さ推定を強化するステレオガイド深度推定法(SGDE)を提案する。
論文 参考訳(メタデータ) (2024-02-19T02:41:37Z) - Temporally Consistent Online Depth Estimation Using Point-Based Fusion [6.5514240555359455]
ビデオストリームの時間的一貫した深度マップをオンライン環境で推定することを目的としている。
これは、将来のフレームが利用できないため難しい問題であり、メソッドは、一貫性を強制するか、以前の推定からエラーを修正するかを選択する必要がある。
本稿では、各フレームを動的に更新するグローバルポイントクラウドと、画像空間における学習的融合アプローチを用いて、これらの課題に対処することを提案する。
論文 参考訳(メタデータ) (2023-04-15T00:04:18Z) - DEVO: Depth-Event Camera Visual Odometry in Challenging Conditions [30.892930944644853]
本稿では,深度・高解像度イベントカメラのステレオ設定のための新しいリアルタイムビジュアル・オドメトリー・フレームワークを提案する。
本フレームワークは, 計算効率に対する精度と堅牢性を, 挑戦シナリオにおける高い性能にバランスさせる。
論文 参考訳(メタデータ) (2022-02-05T13:46:47Z) - Depth Refinement for Improved Stereo Reconstruction [13.941756438712382]
立体画像からの深度推定の現在の技術は、なおも内蔵の欠点に悩まされている。
簡単な解析により、深度誤差は物体の距離に2乗比例することが明らかになった。
本研究では,深度推定に改良ネットワークを用いた簡易かつ効果的な手法を提案する。
論文 参考訳(メタデータ) (2021-12-15T12:21:08Z) - Robust Consistent Video Depth Estimation [65.53308117778361]
本稿では,単眼映像からカメラのカメラポーズと密集した深度マップを推定するアルゴリズムを提案する。
本手法は,(1)低周波大規模アライメントのためのフレキシブルな変形-スプラインと(2)細部奥行き詳細の高周波アライメントのための幾何認識深度フィルタリングとを組み合わせた手法である。
従来の手法とは対照的に, カメラのポーズを入力として必要とせず, かなりの音量, 揺動, 動きのぼやき, 転がりシャッター変形を含む携帯のハンドヘルドキャプチャに頑健な再構成を実現する。
論文 参考訳(メタデータ) (2020-12-10T18:59:48Z) - Self-Attention Dense Depth Estimation Network for Unrectified Video
Sequences [6.821598757786515]
LiDARとレーダーセンサーはリアルタイム深度推定のためのハードウェアソリューションである。
深層学習に基づく自己教師付き深度推定法は有望な結果を示した。
未修正画像に対する自己注意に基づく深度・自我移動ネットワークを提案する。
論文 参考訳(メタデータ) (2020-05-28T21:53:53Z) - Consistent Video Depth Estimation [57.712779457632024]
モノクロ映像中の全画素に対して, 密度, 幾何的に整合した深度を再構成するアルゴリズムを提案する。
動画中の画素の幾何的制約を確立するために、従来の動きから再構成した構造を利用する。
我々のアルゴリズムは、手持ちの映像をある程度のダイナミックな動きで処理することができる。
論文 参考訳(メタデータ) (2020-04-30T17:59:26Z) - Occlusion-Aware Depth Estimation with Adaptive Normal Constraints [85.44842683936471]
カラービデオから多フレーム深度を推定する新しい学習手法を提案する。
本手法は深度推定精度において最先端の手法より優れる。
論文 参考訳(メタデータ) (2020-04-02T07:10:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。