DECICE: Device-Edge-Cloud Intelligent Collaboration Framework
- URL: http://arxiv.org/abs/2305.02697v1
- Date: Thu, 4 May 2023 10:11:14 GMT
- Title: DECICE: Device-Edge-Cloud Intelligent Collaboration Framework
- Authors: Julian Kunkel, Christian Boehme, Jonathan Decker, Fabrizio Magugliani,
Dirk Pleiter, Bastian Koller, Karthee Sivalingam, Sabri Pllana, Alexander
Nikolov, Mujdat Soyturk, Christian Racca, Andrea Bartolini, Adrian Tate,
Berkay Yaman
- Abstract summary: We describe the DECICE framework and architecture.
We highlight use-cases for framework evaluation: intelligent traffic intersection, magnetic resonance imaging, and emergency response.
- Score: 44.60377772088869
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: DECICE is a Horizon Europe project that is developing an AI-enabled open and
portable management framework for automatic and adaptive optimization and
deployment of applications in computing continuum encompassing from IoT sensors
on the Edge to large-scale Cloud / HPC computing infrastructures. In this
paper, we describe the DECICE framework and architecture. Furthermore, we
highlight use-cases for framework evaluation: intelligent traffic intersection,
magnetic resonance imaging, and emergency response.
Related papers
- Task-Oriented Integrated Sensing, Computation and Communication for
Wireless Edge AI [46.61358701676358]
Edge artificial intelligence (AI) has been proposed to provide high-performance computation of a conventional cloud down to the network edge.
Recently, convergence of wireless sensing, computation and communication (SC$2$) for specific edge AI tasks, has aroused paradigm shift.
It is paramount importance to advance fully integrated sensing, computation and communication (I SCC) to achieve ultra-reliable and low-latency edge intelligence acquisition.
arXiv Detail & Related papers (2023-06-11T06:40:51Z) - VEDLIoT -- Next generation accelerated AIoT systems and applications [4.964750143168832]
The VEDLIoT project aims to develop energy-efficient Deep Learning methodologies for distributed Artificial Intelligence of Things (AIoT) applications.
We propose a holistic approach that focuses on optimizing algorithms while addressing safety and security challenges inherent to AIoT systems.
arXiv Detail & Related papers (2023-05-09T12:35:00Z) - The Internet of Senses: Building on Semantic Communications and Edge
Intelligence [67.75406096878321]
The Internet of Senses (IoS) holds the promise of flawless telepresence-style communication for all human receptors'
We elaborate on how the emerging semantic communications and Artificial Intelligence (AI)/Machine Learning (ML) paradigms may satisfy the requirements of IoS use cases.
arXiv Detail & Related papers (2022-12-21T03:37:38Z) - ACE: Towards Application-Centric Edge-Cloud Collaborative Intelligence [14.379967483688834]
Intelligent applications based on machine learning are impacting many parts of our lives.
Current implementations running in the Cloud are unable to satisfy all these constraints.
The Edge-Cloud Collaborative Intelligence paradigm has become a popular approach to address such issues.
arXiv Detail & Related papers (2022-03-24T13:12:33Z) - Composing Complex and Hybrid AI Solutions [52.00820391621739]
We describe an extension of the Acumos system towards enabling the above features for general AI applications.
Our extensions include support for more generic components with gRPC/Protobuf interfaces.
We provide examples of deployable solutions and their interfaces.
arXiv Detail & Related papers (2022-02-25T08:57:06Z) - Towards AIOps in Edge Computing Environments [60.27785717687999]
This paper describes the system design of an AIOps platform which is applicable in heterogeneous, distributed environments.
It is feasible to collect metrics with a high frequency and simultaneously run specific anomaly detection algorithms directly on edge devices.
arXiv Detail & Related papers (2021-02-12T09:33:00Z) - EC-SAGINs: Edge Computing-enhanced Space-Air-Ground Integrated Networks
for Internet of Vehicles [24.603373235841598]
Edge computing-enhanced Internet of Vehicles (EC-IoV) enables ubiquitous data processing and content sharing among vehicles.
EC-IoV is heavily dependent on the connections and interactions between vehicles and terrestrial edge computing infrastructures.
We propose a framework of edge computing-enabled space-air-ground integrated networks (EC-SAGINs) to support various IoV services for the vehicles in remote areas.
arXiv Detail & Related papers (2021-01-15T10:56:23Z) - Reliable Fleet Analytics for Edge IoT Solutions [0.0]
We propose a framework for facilitating machine learning at the edge for AIoT applications.
The contribution is an architecture that includes services, tools, and methods for delivering fleet analytics at scale.
We present a preliminary validation of the framework by performing experiments with IoT devices on a university campus's rooms.
arXiv Detail & Related papers (2021-01-12T11:28:43Z) - Reconfigurable Intelligent Surface Assisted Mobile Edge Computing with
Heterogeneous Learning Tasks [53.1636151439562]
Mobile edge computing (MEC) provides a natural platform for AI applications.
We present an infrastructure to perform machine learning tasks at an MEC with the assistance of a reconfigurable intelligent surface (RIS)
Specifically, we minimize the learning error of all participating users by jointly optimizing transmit power of mobile users, beamforming vectors of the base station, and the phase-shift matrix of the RIS.
arXiv Detail & Related papers (2020-12-25T07:08:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.