論文の概要: Disentangled Contrastive Collaborative Filtering
- arxiv url: http://arxiv.org/abs/2305.02759v4
- Date: Sun, 25 Feb 2024 05:53:34 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-28 00:49:14.515799
- Title: Disentangled Contrastive Collaborative Filtering
- Title(参考訳): 異方性コントラストコラボレーティブフィルタ
- Authors: Xubin Ren, Lianghao Xia, Jiashu Zhao, Dawei Yin and Chao Huang
- Abstract要約: グラフコントラスト学習(GCL)は、監督ラベル不足問題に対処する上で、強力な性能を示した。
本稿では,自己監督型拡張による意図的ゆがみを実現するために,DCCF(Disentangled Contrasative Collaborative Filtering framework)を提案する。
我々のDCCFは、絡み合った自己超越信号からより微細な潜伏因子を蒸留できるだけでなく、増大による騒音を軽減することができる。
- 参考スコア(独自算出の注目度): 36.400303346450514
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent studies show that graph neural networks (GNNs) are prevalent to model
high-order relationships for collaborative filtering (CF). Towards this
research line, graph contrastive learning (GCL) has exhibited powerful
performance in addressing the supervision label shortage issue by learning
augmented user and item representations. While many of them show their
effectiveness, two key questions still remain unexplored: i) Most existing
GCL-based CF models are still limited by ignoring the fact that user-item
interaction behaviors are often driven by diverse latent intent factors (e.g.,
shopping for family party, preferred color or brand of products); ii) Their
introduced non-adaptive augmentation techniques are vulnerable to noisy
information, which raises concerns about the model's robustness and the risk of
incorporating misleading self-supervised signals. In light of these
limitations, we propose a Disentangled Contrastive Collaborative Filtering
framework (DCCF) to realize intent disentanglement with self-supervised
augmentation in an adaptive fashion. With the learned disentangled
representations with global context, our DCCF is able to not only distill
finer-grained latent factors from the entangled self-supervision signals but
also alleviate the augmentation-induced noise. Finally, the cross-view
contrastive learning task is introduced to enable adaptive augmentation with
our parameterized interaction mask generator. Experiments on various public
datasets demonstrate the superiority of our method compared to existing
solutions. Our model implementation is released at the link
https://github.com/HKUDS/DCCF.
- Abstract(参考訳): 近年の研究では、グラフニューラルネットワーク(GNN)が協調フィルタリング(CF)の高次関係のモデル化に有効であることが示されている。
この研究ラインに向けて,グラフコントラスト学習(GCL)は,拡張ユーザとアイテム表現を学習することで,監督ラベル不足問題に対処する上で,強力な性能を示した。
多くは有効性を示しているが、2つの重要な疑問はまだ未解決のままである。
i) 既存のgclベースのcfモデルは,ユーザとコンテンツの相互作用行動が多種多様な潜在意図要因(例えば,家族に対する買い物,好みの色,商品のブランドなど)によって引き起こされるという事実を無視して,いまだに制限されている。
二 導入した非適応増強技術は、ノイズ情報に弱いため、モデルの堅牢性及び誤った自己管理信号の導入リスクへの懸念を生じさせる。
これらの制約を考慮して,自己監督型拡張による意図的絡み合いを実現するためのDCCF(Disentangled Contrasative Collaborative Filtering framework)を提案する。
学習された異角形表現と大域的文脈により,dccfは,絡み合った自己スーパービジョン信号からきめ細かな潜伏因子を抽出できるだけでなく,拡張によるノイズを軽減することができる。
最後に、パラメータ化された相互作用マスク生成器による適応的な拡張を実現するために、クロスビューコントラスト学習タスクを導入した。
各種公開データセットを用いた実験により,提案手法が既存ソリューションよりも優れていることを示す。
私たちのモデル実装はリンクhttps://github.com/hkuds/dccfでリリースしています。
関連論文リスト
- SAFE-RL: Saliency-Aware Counterfactual Explainer for Deep Reinforcement Learning Policies [13.26174103650211]
学習されたポリシーの説明可能性の欠如は、自動運転システムのような安全クリティカルなアプリケーションへの取り込みを妨げる。
対実的(CF)説明は、最近、ブラックボックスディープラーニング(DL)モデルを解釈する能力で有名になった。
そこで本稿では,過去の観測状態の列にまたがる最も影響力のある入力画素を特定するために,サリエンシマップを提案する。
我々は,ADS,Atari Pong,Pacman,Space-invadersゲームなど,多種多様な領域におけるフレームワークの有効性を評価する。
論文 参考訳(メタデータ) (2024-04-28T21:47:34Z) - Client-side Gradient Inversion Against Federated Learning from Poisoning [59.74484221875662]
フェデレートラーニング(FL)により、分散参加者は、データを中央サーバに直接共有することなく、グローバルモデルをトレーニングできる。
近年の研究では、FLは元のトレーニングサンプルの再構築を目的とした勾配反転攻撃(GIA)に弱いことが判明している。
本稿では,クライアント側から起動可能な新たな攻撃手法であるクライアント側中毒性グレーディエント・インバージョン(CGI)を提案する。
論文 参考訳(メタデータ) (2023-09-14T03:48:27Z) - Graph Masked Autoencoder for Sequential Recommendation [10.319298705782058]
本稿では,自動エンコーダ付きシーケンシャルレコメンダシステム(MAERec, Graph Masked AutoEncoder-enhanced Sequence Recommender System)を提案する。
提案手法は最先端のベースラインモデルを大幅に上回り,データノイズや空間性に対するより正確な表現を学習することができる。
論文 参考訳(メタデータ) (2023-05-08T10:57:56Z) - Cluster-level pseudo-labelling for source-free cross-domain facial
expression recognition [94.56304526014875]
表情認識のためのSFUDA法を提案する。
本手法は,自己教師付き事前学習を利用して,対象データから優れた特徴表現を学習する。
提案手法の有効性を4つの適応方式で検証し,FERに適用した場合,既存のSFUDA法より一貫して優れていることを示す。
論文 参考訳(メタデータ) (2022-10-11T08:24:50Z) - Augmentation-induced Consistency Regularization for Classification [25.388324221293203]
我々はCR-Augと呼ばれるデータ拡張に基づく一貫性の規則化フレームワークを提案する。
CR-Augは、データ拡張によって生成された異なるサブモデルの出力分布を互いに整合するように強制する。
画像と音声の分類タスクにCR-Augを実装し、その有効性を検証するために広範な実験を行う。
論文 参考訳(メタデータ) (2022-05-25T03:15:36Z) - Hypergraph Contrastive Collaborative Filtering [44.8586906335262]
新たな自己監督型推薦フレームワークHypergraph Contrastive Collaborative Filtering (HCCF)を提案する。
HCCFは、ハイパーグラフを拡張したクロスビューコントラスト学習アーキテクチャと、ローカルおよびグローバルなコラボレーティブな関係をキャプチャする。
提案モデルでは,ハイパーグラフ構造と自己教師付き学習を効果的に統合し,レコメンダシステムの表現品質を向上する。
論文 参考訳(メタデータ) (2022-04-26T10:06:04Z) - Discriminator-Free Generative Adversarial Attack [87.71852388383242]
生成的ベースの敵攻撃は、この制限を取り除くことができる。
ASymmetric Saliency-based Auto-Encoder (SSAE) は摂動を生成する。
SSAEが生成した敵の例は、広く使われているモデルを崩壊させるだけでなく、優れた視覚的品質を実現する。
論文 参考訳(メタデータ) (2021-07-20T01:55:21Z) - Adversarial Feature Augmentation and Normalization for Visual
Recognition [109.6834687220478]
最近のコンピュータビジョンの進歩は、分類モデルの一般化能力を改善するために、逆データ拡張を利用する。
本稿では,中間的特徴埋め込みにおける敵対的拡張を提唱する効率的かつ効率的な代替手法を提案する。
代表的なバックボーンネットワークを用いて,多様な視覚認識タスクにまたがる提案手法を検証する。
論文 参考訳(メタデータ) (2021-03-22T20:36:34Z) - Proactive Pseudo-Intervention: Causally Informed Contrastive Learning
For Interpretable Vision Models [103.64435911083432]
PPI(Proactive Pseudo-Intervention)と呼ばれる新しい対照的な学習戦略を提案する。
PPIは、因果関係のない画像の特徴を保護するために積極的に介入する。
また,重要な画像画素を識別するための,因果的に通知された新たなサリエンスマッピングモジュールを考案し,モデル解釈の容易性を示す。
論文 参考訳(メタデータ) (2020-12-06T20:30:26Z) - Contextual Fusion For Adversarial Robustness [0.0]
ディープニューラルネットワークは、通常、1つの特定の情報ストリームを処理し、様々な種類の敵の摂動に影響を受けやすいように設計されている。
そこで我々はPlaces-CNNとImagenet-CNNから並列に抽出した背景特徴と前景特徴を組み合わせた融合モデルを開発した。
グラデーションをベースとした攻撃では,フュージョンは乱れのないデータの性能を低下させることなく,分類の大幅な改善を可能にする。
論文 参考訳(メタデータ) (2020-11-18T20:13:23Z) - Disentangled Graph Collaborative Filtering [100.26835145396782]
Disentangled Graph Collaborative Filtering (DGCF)は、インタラクションデータからユーザとアイテムの情報表現を学ぶための新しいモデルである。
ユーザ・イテムのインタラクション毎に意図を超越した分布をモデル化することにより、インテント・アウェアなインタラクショングラフと表現を反復的に洗練する。
DGCFはNGCF、DisenGCN、MacridVAEといった最先端モデルよりも大幅に改善されている。
論文 参考訳(メタデータ) (2020-07-03T15:37:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。