論文の概要: SuperNOVA: Design Strategies and Opportunities for Interactive Visualization in Computational Notebooks
- arxiv url: http://arxiv.org/abs/2305.03039v2
- Date: Thu, 28 Mar 2024 19:51:55 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-01 20:56:17.083320
- Title: SuperNOVA: Design Strategies and Opportunities for Interactive Visualization in Computational Notebooks
- Title(参考訳): SuperNOVA:計算ノートにおけるインタラクティブな可視化のための設計戦略と機会
- Authors: Zijie J. Wang, David Munechika, Seongmin Lee, Duen Horng Chau,
- Abstract要約: ノートブックの対話型可視化ツール163について分析する。
重要な設計上の意味とトレードオフを特定します。
我々は、研究者が既存のノートブック視覚化ツールを探索するのに役立つオープンソースのインタラクティブブラウザであるSuperNOVAを開発した。
- 参考スコア(独自算出の注目度): 34.04783941358773
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Computational notebooks, such as Jupyter Notebook, have become data scientists' de facto programming environments. Many visualization researchers and practitioners have developed interactive visualization tools that support notebooks, yet little is known about the appropriate design of these tools. To address this critical research gap, we investigate the design strategies in this space by analyzing 163 notebook visualization tools. Our analysis encompasses 64 systems from academic papers and 105 systems sourced from a pool of 55k notebooks containing interactive visualizations that we obtain via scraping 8.6 million notebooks on GitHub. Through this study, we identify key design implications and trade-offs, such as leveraging multimodal data in notebooks as well as balancing the degree of visualization-notebook integration. Furthermore, we provide empirical evidence that tools compatible with more notebook platforms have a greater impact. Finally, we develop SuperNOVA, an open-source interactive browser to help researchers explore existing notebook visualization tools. SuperNOVA is publicly accessible at: https://poloclub.github.io/supernova/.
- Abstract(参考訳): Jupyter Notebookのような計算ノートは、データサイエンティストの事実上のプログラミング環境になっている。
多くの可視化研究者や実践家はノートブックをサポートするインタラクティブな可視化ツールを開発したが、これらのツールの適切な設計についてはほとんど分かっていない。
この重要な研究ギャップに対処するために,163個のノートブック可視化ツールを解析して,この分野の設計戦略について検討する。
私たちの分析では、学術論文から得られた64のシステムと、GitHub上の860万のノートブックをスクラップすることで得られるインタラクティブな視覚化を含む55kノートブックのプールから得られた105のシステムが含まれています。
本研究では,ノートブックにおけるマルチモーダルデータの活用や,可視化ノートブック統合の度合いのバランスなど,重要な設計上の意味とトレードオフを明らかにする。
さらに、より多くのノートプラットフォームと互換性のあるツールがより大きな影響を与えるという実証的な証拠を提供する。
最後に、研究者が既存のノートブック視覚化ツールを探索するのに役立つオープンソースのインタラクティブブラウザであるSuperNOVAを開発した。
SuperNOVAは、https://poloclub.github.io/supernova/.comで公開されている。
関連論文リスト
- Open-CD: A Comprehensive Toolbox for Change Detection [59.79011759027916]
Open-CDは変更検出ツールボックスで、変更検出方法の豊富なセットと関連するコンポーネントとモジュールを含んでいる。
徐々に、多くの一般的な変更検出方法や同時代のモジュールをカバーする統一されたプラットフォームへと進化していく。
論文 参考訳(メタデータ) (2024-07-22T01:04:16Z) - Hidden Gems in the Rough: Computational Notebooks as an Uncharted Oasis
for IDEs [0.0]
統合開発環境(IDE)とノートブックの統合について論じる。
実験の円滑化,共同機能の追加,コード理解の改善という,3つの主要な領域に重点を置いています。
論文 参考訳(メタデータ) (2024-02-21T12:10:57Z) - Notably Inaccessible -- Data Driven Understanding of Data Science
Notebook (In)Accessibility [13.428631054625797]
各種アクセシビリティ問題を特定するために,10000 Jupyter ノートの大規模システム解析を行った。
ノートのアーティファクトのアクセシビリティ向上,オーサリングプラクティスの提案,ノートブックのアクセス性向上のためのインフラストラクチャの変更を提案する。
論文 参考訳(メタデータ) (2023-08-07T01:33:32Z) - Review of Large Vision Models and Visual Prompt Engineering [50.63394642549947]
レビューは、大きな視覚モデルと視覚プロンプトエンジニアリングのためにコンピュータビジョン領域で使用される手法を要約することを目的としている。
本稿では、視覚領域における影響力のある大規模モデルと、これらのモデルに使用される一連のプロンプトエンジニアリング手法を提案する。
論文 参考訳(メタデータ) (2023-07-03T08:48:49Z) - Deep learning for table detection and structure recognition: A survey [49.09628624903334]
本調査の目的は,テーブル検出の分野での大きな進展を深く理解することである。
この分野における古典的アプリケーションと新しいアプリケーションの両方について分析する。
既存のモデルのデータセットとソースコードは、読者にこの膨大な文献のコンパスを提供するために組織されている。
論文 参考訳(メタデータ) (2022-11-15T19:42:27Z) - StickyLand: Breaking the Linear Presentation of Computational Notebooks [5.1175396458764855]
StickyLandはノートブックの拡張機能で、ユーザは自由にコードをリニアな方法で整理できる。
常に画面に表示される粘着性のあるセルを使えば、ユーザーはノートに素早くアクセスでき、実験結果をすぐに観察でき、インタラクティブなダッシュボードを簡単に構築できる。
論文 参考訳(メタデータ) (2022-02-22T18:25:54Z) - Tensor Methods in Computer Vision and Deep Learning [120.3881619902096]
テンソル(tensor)は、複数の次元の視覚データを自然に表現できるデータ構造である。
コンピュータビジョンにおけるディープラーニングパラダイムシフトの出現により、テンソルはさらに基本的なものになっている。
本稿では,表現学習と深層学習の文脈において,テンソルとテンソル法を深く,実践的に検討する。
論文 参考訳(メタデータ) (2021-07-07T18:42:45Z) - GIS and Computational Notebooks [0.0]
この章では、地理的文脈で計算ノートを紹介します。
これはまず、ノートブックの根底にある計算パラダイムと哲学を説明することから始まる。
そして、そのアーキテクチャをアンパックして、ノートブックユーザの典型的なワークフローを図示する。
論文 参考訳(メタデータ) (2021-01-02T01:59:14Z) - FIVES: Feature Interaction Via Edge Search for Large-Scale Tabular Data [106.76845921324704]
本稿では,FIVES (Feature Interaction Via Edge Search) という新しい手法を提案する。
FIVESは、定義された特徴グラフ上のエッジを探すために、インタラクティブな特徴生成のタスクを定式化する。
本稿では,対話的特徴の探索を動機づける理論的証拠を提示する。
論文 参考訳(メタデータ) (2020-07-29T03:33:18Z) - ReproduceMeGit: A Visualization Tool for Analyzing Reproducibility of
Jupyter Notebooks [0.0]
本稿では、Jupyter NotebooksのGitHubを分析する可視化ツールであるReproduceMeGitを紹介する。
このツールは、再現可能なノートブックの数、例外となったノートブック数、オリジナルのノートブックと異なる結果を得たノートブック数などの情報を提供する。
論文 参考訳(メタデータ) (2020-06-22T10:05:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。