Contrastive losses as generalized models of global epistasis
- URL: http://arxiv.org/abs/2305.03136v4
- Date: Tue, 15 Oct 2024 22:08:49 GMT
- Title: Contrastive losses as generalized models of global epistasis
- Authors: David H. Brookes, Jakub Otwinowski, Sam Sinai,
- Abstract summary: Fitness functions map large spaces of biological sequences to properties of interest.
Global epistasis models assume that a sparse latent function is transformed by a monotonic nonlinearity to emit measurable fitness.
We show that contrastive losses are able to accurately estimate a ranking function from limited data even in regimes where MSE is ineffective.
- Score: 0.5461938536945721
- License:
- Abstract: Fitness functions map large combinatorial spaces of biological sequences to properties of interest. Inferring these multimodal functions from experimental data is a central task in modern protein engineering. Global epistasis models are an effective and physically-grounded class of models for estimating fitness functions from observed data. These models assume that a sparse latent function is transformed by a monotonic nonlinearity to emit measurable fitness. Here we demonstrate that minimizing supervised contrastive loss functions, such as the Bradley-Terry loss, is a simple and flexible technique for extracting the sparse latent function implied by global epistasis. We argue by way of a fitness-epistasis uncertainty principle that the nonlinearities in global epistasis models can produce observed fitness functions that do not admit sparse representations, and thus may be inefficient to learn from observations when using a Mean Squared Error (MSE) loss (a common practice). We show that contrastive losses are able to accurately estimate a ranking function from limited data even in regimes where MSE is ineffective and validate the practical utility of this insight by demonstrating that contrastive loss functions result in consistently improved performance on benchmark tasks.
Related papers
- Curve Your Enthusiasm: Concurvity Regularization in Differentiable
Generalized Additive Models [5.519653885553456]
Generalized Additive Models (GAMs) have recently experienced a resurgence in popularity due to their interpretability.
We show how concurvity can severly impair the interpretability of GAMs.
We propose a remedy: a conceptually simple, yet effective regularizer which penalizes pairwise correlations of the non-linearly transformed feature variables.
arXiv Detail & Related papers (2023-05-19T06:55:49Z) - Theoretical Characterization of the Generalization Performance of
Overfitted Meta-Learning [70.52689048213398]
This paper studies the performance of overfitted meta-learning under a linear regression model with Gaussian features.
We find new and interesting properties that do not exist in single-task linear regression.
Our analysis suggests that benign overfitting is more significant and easier to observe when the noise and the diversity/fluctuation of the ground truth of each training task are large.
arXiv Detail & Related papers (2023-04-09T20:36:13Z) - On the Efficacy of Generalization Error Prediction Scoring Functions [33.24980750651318]
Generalization error predictors (GEPs) aim to predict model performance on unseen distributions by deriving dataset-level error estimates from sample-level scores.
We rigorously study the effectiveness of popular scoring functions (confidence, local manifold smoothness, model agreement) independent of mechanism choice.
arXiv Detail & Related papers (2023-03-23T18:08:44Z) - Boosting Differentiable Causal Discovery via Adaptive Sample Reweighting [62.23057729112182]
Differentiable score-based causal discovery methods learn a directed acyclic graph from observational data.
We propose a model-agnostic framework to boost causal discovery performance by dynamically learning the adaptive weights for the Reweighted Score function, ReScore.
arXiv Detail & Related papers (2023-03-06T14:49:59Z) - Modeling Uncertain Feature Representation for Domain Generalization [49.129544670700525]
We show that our method consistently improves the network generalization ability on multiple vision tasks.
Our methods are simple yet effective and can be readily integrated into networks without additional trainable parameters or loss constraints.
arXiv Detail & Related papers (2023-01-16T14:25:02Z) - Using Focal Loss to Fight Shallow Heuristics: An Empirical Analysis of
Modulated Cross-Entropy in Natural Language Inference [0.0]
In some datasets, deep neural networks discover underlyings that allow them to take shortcuts in the learning process, resulting in poor generalization capability.
Instead of using standard cross-entropy, we explore whether a modulated version of cross-entropy called focal loss can constrain the model so as not to use underlyings and improve generalization performance.
Our experiments in natural language inference show that focal loss has a regularizing impact on the learning process, increasing accuracy on out-of-distribution data, but slightly decreasing performance on in-distribution data.
arXiv Detail & Related papers (2022-11-23T22:19:00Z) - A Fair Loss Function for Network Pruning [70.35230425589592]
We introduce the performance weighted loss function, a simple modified cross-entropy loss function that can be used to limit the introduction of biases during pruning.
Experiments using the CelebA, Fitzpatrick17k and CIFAR-10 datasets demonstrate that the proposed method is a simple and effective tool.
arXiv Detail & Related papers (2022-11-18T15:17:28Z) - Generalization of Neural Combinatorial Solvers Through the Lens of
Adversarial Robustness [68.97830259849086]
Most datasets only capture a simpler subproblem and likely suffer from spurious features.
We study adversarial robustness - a local generalization property - to reveal hard, model-specific instances and spurious features.
Unlike in other applications, where perturbation models are designed around subjective notions of imperceptibility, our perturbation models are efficient and sound.
Surprisingly, with such perturbations, a sufficiently expressive neural solver does not suffer from the limitations of the accuracy-robustness trade-off common in supervised learning.
arXiv Detail & Related papers (2021-10-21T07:28:11Z) - Efficient Multidimensional Functional Data Analysis Using Marginal
Product Basis Systems [2.4554686192257424]
We propose a framework for learning continuous representations from a sample of multidimensional functional data.
We show that the resulting estimation problem can be solved efficiently by the tensor decomposition.
We conclude with a real data application in neuroimaging.
arXiv Detail & Related papers (2021-07-30T16:02:15Z) - Non-parametric Models for Non-negative Functions [48.7576911714538]
We provide the first model for non-negative functions from the same good linear models.
We prove that it admits a representer theorem and provide an efficient dual formulation for convex problems.
arXiv Detail & Related papers (2020-07-08T07:17:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.