A Versatile Influence Function for Data Attribution with Non-Decomposable Loss
- URL: http://arxiv.org/abs/2412.01335v1
- Date: Mon, 02 Dec 2024 09:59:01 GMT
- Title: A Versatile Influence Function for Data Attribution with Non-Decomposable Loss
- Authors: Junwei Deng, Weijing Tang, Jiaqi W. Ma,
- Abstract summary: We propose a Versatile Influence Function (VIF) that can be straightforwardly applied to machine learning models trained with any non-decomposable loss.
VIF represents a significant advancement in data attribution, enabling efficient influence-function-based attribution across a wide range of machine learning paradigms.
- Score: 3.1615846013409925
- License:
- Abstract: Influence function, a technique rooted in robust statistics, has been adapted in modern machine learning for a novel application: data attribution -- quantifying how individual training data points affect a model's predictions. However, the common derivation of influence functions in the data attribution literature is limited to loss functions that can be decomposed into a sum of individual data point losses, with the most prominent examples known as M-estimators. This restricts the application of influence functions to more complex learning objectives, which we refer to as non-decomposable losses, such as contrastive or ranking losses, where a unit loss term depends on multiple data points and cannot be decomposed further. In this work, we bridge this gap by revisiting the general formulation of influence function from robust statistics, which extends beyond M-estimators. Based on this formulation, we propose a novel method, the Versatile Influence Function (VIF), that can be straightforwardly applied to machine learning models trained with any non-decomposable loss. In comparison to the classical approach in statistics, the proposed VIF is designed to fully leverage the power of auto-differentiation, hereby eliminating the need for case-specific derivations of each loss function. We demonstrate the effectiveness of VIF across three examples: Cox regression for survival analysis, node embedding for network analysis, and listwise learning-to-rank for information retrieval. In all cases, the influence estimated by VIF closely resembles the results obtained by brute-force leave-one-out retraining, while being up to $10^3$ times faster to compute. We believe VIF represents a significant advancement in data attribution, enabling efficient influence-function-based attribution across a wide range of machine learning paradigms, with broad potential for practical use cases.
Related papers
- Capturing the Temporal Dependence of Training Data Influence [100.91355498124527]
We formalize the concept of trajectory-specific leave-one-out influence, which quantifies the impact of removing a data point during training.
We propose data value embedding, a novel technique enabling efficient approximation of trajectory-specific LOO.
As data value embedding captures training data ordering, it offers valuable insights into model training dynamics.
arXiv Detail & Related papers (2024-12-12T18:28:55Z) - Dissecting Representation Misalignment in Contrastive Learning via Influence Function [15.28417468377201]
We introduce the Extended Influence Function for Contrastive Loss (ECIF), an influence function crafted for contrastive loss.
ECIF considers both positive and negative samples and provides a closed-form approximation of contrastive learning models.
Building upon ECIF, we develop a series of algorithms for data evaluation, misalignment detection, and misprediction trace-back tasks.
arXiv Detail & Related papers (2024-11-18T15:45:41Z) - Most Influential Subset Selection: Challenges, Promises, and Beyond [9.479235005673683]
We study the Most Influential Subset Selection (MISS) problem, which aims to identify a subset of training samples with the greatest collective influence.
We conduct a comprehensive analysis of the prevailing approaches in MISS, elucidating their strengths and weaknesses.
We demonstrate that an adaptive version of theses which applies them iteratively, can effectively capture the interactions among samples.
arXiv Detail & Related papers (2024-09-25T20:00:23Z) - If Influence Functions are the Answer, Then What is the Question? [7.873458431535409]
Influence functions efficiently estimate the effect of removing a single training data point on a model's learned parameters.
While influence estimates align well with leave-one-out retraining for linear models, recent works have shown this alignment is often poor in neural networks.
arXiv Detail & Related papers (2022-09-12T16:17:43Z) - Accurate and Robust Feature Importance Estimation under Distribution
Shifts [49.58991359544005]
PRoFILE is a novel feature importance estimation method.
We show significant improvements over state-of-the-art approaches, both in terms of fidelity and robustness.
arXiv Detail & Related papers (2020-09-30T05:29:01Z) - Estimating Structural Target Functions using Machine Learning and
Influence Functions [103.47897241856603]
We propose a new framework for statistical machine learning of target functions arising as identifiable functionals from statistical models.
This framework is problem- and model-agnostic and can be used to estimate a broad variety of target parameters of interest in applied statistics.
We put particular focus on so-called coarsening at random/doubly robust problems with partially unobserved information.
arXiv Detail & Related papers (2020-08-14T16:48:29Z) - An Equivalence between Loss Functions and Non-Uniform Sampling in
Experience Replay [72.23433407017558]
We show that any loss function evaluated with non-uniformly sampled data can be transformed into another uniformly sampled loss function.
Surprisingly, we find in some environments PER can be replaced entirely by this new loss function without impact to empirical performance.
arXiv Detail & Related papers (2020-07-12T17:45:24Z) - Influence Functions in Deep Learning Are Fragile [52.31375893260445]
influence functions approximate the effect of samples in test-time predictions.
influence estimates are fairly accurate for shallow networks.
Hessian regularization is important to get highquality influence estimates.
arXiv Detail & Related papers (2020-06-25T18:25:59Z) - On the Benefits of Invariance in Neural Networks [56.362579457990094]
We show that training with data augmentation leads to better estimates of risk and thereof gradients, and we provide a PAC-Bayes generalization bound for models trained with data augmentation.
We also show that compared to data augmentation, feature averaging reduces generalization error when used with convex losses, and tightens PAC-Bayes bounds.
arXiv Detail & Related papers (2020-05-01T02:08:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.