HeteroEdge: Addressing Asymmetry in Heterogeneous Collaborative
Autonomous Systems
- URL: http://arxiv.org/abs/2305.03252v1
- Date: Fri, 5 May 2023 02:43:16 GMT
- Title: HeteroEdge: Addressing Asymmetry in Heterogeneous Collaborative
Autonomous Systems
- Authors: Mohammad Saeid Anwar, Emon Dey, Maloy Kumar Devnath, Indrajeet Ghosh,
Naima Khan, Jade Freeman, Timothy Gregory, Niranjan Suri, Kasthuri Jayaraja,
Sreenivasan Ramasamy Ramamurthy, Nirmalya Roy
- Abstract summary: We propose a self-adaptive optimization framework for a testbed comprising two Unmanned Ground Vehicles (UGVs) and two NVIDIA Jetson devices.
This framework efficiently manages multiple tasks (storage, processing, computation, transmission, inference) on heterogeneous nodes concurrently.
It involves compressing and masking input image frames, identifying similar frames, and profiling devices to obtain boundary conditions for optimization.
- Score: 1.274065448486689
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Gathering knowledge about surroundings and generating situational awareness
for IoT devices is of utmost importance for systems developed for smart urban
and uncontested environments. For example, a large-area surveillance system is
typically equipped with multi-modal sensors such as cameras and LIDARs and is
required to execute deep learning algorithms for action, face, behavior, and
object recognition. However, these systems face power and memory constraints
due to their ubiquitous nature, making it crucial to optimize data processing,
deep learning algorithm input, and model inference communication. In this
paper, we propose a self-adaptive optimization framework for a testbed
comprising two Unmanned Ground Vehicles (UGVs) and two NVIDIA Jetson devices.
This framework efficiently manages multiple tasks (storage, processing,
computation, transmission, inference) on heterogeneous nodes concurrently. It
involves compressing and masking input image frames, identifying similar
frames, and profiling devices to obtain boundary conditions for optimization..
Finally, we propose and optimize a novel parameter split-ratio, which indicates
the proportion of the data required to be offloaded to another device while
considering the networking bandwidth, busy factor, memory (CPU, GPU, RAM), and
power constraints of the devices in the testbed. Our evaluations captured while
executing multiple tasks (e.g., PoseNet, SegNet, ImageNet, DetectNet, DepthNet)
simultaneously, reveal that executing 70% (split-ratio=70%) of the data on the
auxiliary node minimizes the offloading latency by approx. 33% (18.7 ms/image
to 12.5 ms/image) and the total operation time by approx. 47% (69.32s to
36.43s) compared to the baseline configuration (executing on the primary node).
Related papers
- Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
Task-oriented edge computing addresses this by shifting data analysis to the edge.
Existing methods struggle to balance high model performance with low resource consumption.
We propose a novel co-design framework to optimize neural network architecture.
arXiv Detail & Related papers (2024-10-29T19:02:54Z) - Detection-segmentation convolutional neural network for autonomous
vehicle perception [0.0]
Object detection and segmentation are two core modules of an autonomous vehicle perception system.
Currently, the most commonly used algorithms are based on deep neural networks, which guarantee high efficiency but require high-performance computing platforms.
A reduction in the complexity of the network can be achieved by using an appropriate architecture, representation, and computing platform.
arXiv Detail & Related papers (2023-06-30T08:54:52Z) - UNETR++: Delving into Efficient and Accurate 3D Medical Image Segmentation [93.88170217725805]
We propose a 3D medical image segmentation approach, named UNETR++, that offers both high-quality segmentation masks as well as efficiency in terms of parameters, compute cost, and inference speed.
The core of our design is the introduction of a novel efficient paired attention (EPA) block that efficiently learns spatial and channel-wise discriminative features.
Our evaluations on five benchmarks, Synapse, BTCV, ACDC, BRaTs, and Decathlon-Lung, reveal the effectiveness of our contributions in terms of both efficiency and accuracy.
arXiv Detail & Related papers (2022-12-08T18:59:57Z) - HALSIE: Hybrid Approach to Learning Segmentation by Simultaneously
Exploiting Image and Event Modalities [6.543272301133159]
Event cameras detect changes in per-pixel intensity to generate asynchronous event streams.
They offer great potential for accurate semantic map retrieval in real-time autonomous systems.
Existing implementations for event segmentation suffer from sub-based performance.
We propose hybrid end-to-end learning framework HALSIE to reduce inference cost by up to $20times$ versus art.
arXiv Detail & Related papers (2022-11-19T17:09:50Z) - Task-Oriented Sensing, Computation, and Communication Integration for
Multi-Device Edge AI [108.08079323459822]
This paper studies a new multi-intelligent edge artificial-latency (AI) system, which jointly exploits the AI model split inference and integrated sensing and communication (ISAC)
We measure the inference accuracy by adopting an approximate but tractable metric, namely discriminant gain.
arXiv Detail & Related papers (2022-07-03T06:57:07Z) - An Adaptive Device-Edge Co-Inference Framework Based on Soft
Actor-Critic [72.35307086274912]
High-dimension parameter model and large-scale mathematical calculation restrict execution efficiency, especially for Internet of Things (IoT) devices.
We propose a new Deep Reinforcement Learning (DRL)-Soft Actor Critic for discrete (SAC-d), which generates the emphexit point, emphexit point, and emphcompressing bits by soft policy iterations.
Based on the latency and accuracy aware reward design, such an computation can well adapt to the complex environment like dynamic wireless channel and arbitrary processing, and is capable of supporting the 5G URL
arXiv Detail & Related papers (2022-01-09T09:31:50Z) - Efficient Two-Stream Network for Violence Detection Using Separable
Convolutional LSTM [0.0]
We propose an efficient two-stream deep learning architecture leveraging Separable Convolutional LSTM (SepConvLSTM) and pre-trained MobileNet.
SepConvLSTM is constructed by replacing convolution operation at each gate of ConvLSTM with a depthwise separable convolution.
Our model outperforms the accuracy on the larger and more challenging RWF-2000 dataset by more than a 2% margin.
arXiv Detail & Related papers (2021-02-21T12:01:48Z) - Multi-Task Network Pruning and Embedded Optimization for Real-time
Deployment in ADAS [0.0]
Camera-based Deep Learning algorithms are increasingly needed for perception in Automated Driving systems.
constraints from the automotive industry challenge the deployment of CNNs by imposing embedded systems with limited computational resources.
We propose an approach to embed a multi-task CNN network under such conditions on a commercial prototype platform.
arXiv Detail & Related papers (2021-01-19T19:29:38Z) - Multi-scale Interaction for Real-time LiDAR Data Segmentation on an
Embedded Platform [62.91011959772665]
Real-time semantic segmentation of LiDAR data is crucial for autonomously driving vehicles.
Current approaches that operate directly on the point cloud use complex spatial aggregation operations.
We propose a projection-based method, called Multi-scale Interaction Network (MINet), which is very efficient and accurate.
arXiv Detail & Related papers (2020-08-20T19:06:11Z) - Identity-Aware Attribute Recognition via Real-Time Distributed Inference
in Mobile Edge Clouds [53.07042574352251]
We design novel models for pedestrian attribute recognition with re-ID in an MEC-enabled camera monitoring system.
We propose a novel inference framework with a set of distributed modules, by jointly considering the attribute recognition and person re-ID.
We then devise a learning-based algorithm for the distributions of the modules of the proposed distributed inference framework.
arXiv Detail & Related papers (2020-08-12T12:03:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.