Adaptive Graph Convolutional Subspace Clustering
- URL: http://arxiv.org/abs/2305.03414v1
- Date: Fri, 5 May 2023 10:27:23 GMT
- Title: Adaptive Graph Convolutional Subspace Clustering
- Authors: Lai Wei, Zhengwei Chen, Jun Yin, Changming Zhu, Rigui Zhou, Jin Liu
- Abstract summary: Spectral-type subspace clustering algorithms have shown excellent performance in many subspace clustering applications.
In this paper, inspired by graph convolutional networks, we use the graph convolution technique to develop a feature extraction method and a coefficient matrix constraint simultaneously.
We claim that by using AGCSC, the aggregated feature representation of original data samples is suitable for subspace clustering.
- Score: 10.766537212211217
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Spectral-type subspace clustering algorithms have shown excellent performance
in many subspace clustering applications. The existing spectral-type subspace
clustering algorithms either focus on designing constraints for the
reconstruction coefficient matrix or feature extraction methods for finding
latent features of original data samples. In this paper, inspired by graph
convolutional networks, we use the graph convolution technique to develop a
feature extraction method and a coefficient matrix constraint simultaneously.
And the graph-convolutional operator is updated iteratively and adaptively in
our proposed algorithm. Hence, we call the proposed method adaptive graph
convolutional subspace clustering (AGCSC). We claim that by using AGCSC, the
aggregated feature representation of original data samples is suitable for
subspace clustering, and the coefficient matrix could reveal the subspace
structure of the original data set more faithfully. Finally, plenty of subspace
clustering experiments prove our conclusions and show that AGCSC outperforms
some related methods as well as some deep models.
Related papers
- Datacube segmentation via Deep Spectral Clustering [76.48544221010424]
Extended Vision techniques often pose a challenge in their interpretation.
The huge dimensionality of data cube spectra poses a complex task in its statistical interpretation.
In this paper, we explore the possibility of applying unsupervised clustering methods in encoded space.
A statistical dimensional reduction is performed by an ad hoc trained (Variational) AutoEncoder, while the clustering process is performed by a (learnable) iterative K-Means clustering algorithm.
arXiv Detail & Related papers (2024-01-31T09:31:28Z) - Contrastive Multi-view Subspace Clustering of Hyperspectral Images based
on Graph Convolutional Networks [14.978666092012856]
Subspace clustering is an effective approach for clustering hyperspectral images.
In this study, contrastive multi-view subspace clustering of HSI was proposed based on graph convolutional networks.
The proposed model effectively improves the clustering accuracy of HSI.
arXiv Detail & Related papers (2023-12-11T02:22:10Z) - Deep Double Self-Expressive Subspace Clustering [7.875193047472789]
We propose a double self-expressive subspace clustering algorithm.
The proposed algorithm can achieve better clustering than state-of-the-art methods.
arXiv Detail & Related papers (2023-06-20T15:10:35Z) - Instance-Optimal Cluster Recovery in the Labeled Stochastic Block Model [79.46465138631592]
We devise an efficient algorithm that recovers clusters using the observed labels.
We present Instance-Adaptive Clustering (IAC), the first algorithm whose performance matches these lower bounds both in expectation and with high probability.
arXiv Detail & Related papers (2023-06-18T08:46:06Z) - flow-based clustering and spectral clustering: a comparison [0.688204255655161]
We study a novel graph clustering method for data with an intrinsic network structure.
We exploit an intrinsic network structure of data to construct Euclidean feature vectors.
Our results indicate that our clustering methods can cope with certain graph structures.
arXiv Detail & Related papers (2022-06-20T21:49:52Z) - Semi-Supervised Subspace Clustering via Tensor Low-Rank Representation [64.49871502193477]
We propose a novel semi-supervised subspace clustering method, which is able to simultaneously augment the initial supervisory information and construct a discriminative affinity matrix.
Comprehensive experimental results on six commonly-used benchmark datasets demonstrate the superiority of our method over state-of-the-art methods.
arXiv Detail & Related papers (2022-05-21T01:47:17Z) - Spatially Coherent Clustering Based on Orthogonal Nonnegative Matrix
Factorization [0.0]
We introduce in this work clustering models based on a total variation (TV) regularization procedure on the cluster membership matrix.
We provide a numerical evaluation of all proposed methods on a hyperspectral dataset obtained from a matrix-assisted laser desorption/ionisation imaging measurement.
arXiv Detail & Related papers (2021-04-25T23:40:41Z) - Spatial-Spectral Clustering with Anchor Graph for Hyperspectral Image [88.60285937702304]
This paper proposes a novel unsupervised approach called spatial-spectral clustering with anchor graph (SSCAG) for HSI data clustering.
The proposed SSCAG is competitive against the state-of-the-art approaches.
arXiv Detail & Related papers (2021-04-24T08:09:27Z) - Spectral clustering on spherical coordinates under the degree-corrected
stochastic blockmodel [5.156484100374058]
A novel spectral clustering algorithm is proposed for community detection under the degree-corrected blockmodel.
Results show improved performance over competing methods in representing computer networks.
arXiv Detail & Related papers (2020-11-09T16:55:38Z) - Kernel learning approaches for summarising and combining posterior
similarity matrices [68.8204255655161]
We build upon the notion of the posterior similarity matrix (PSM) in order to suggest new approaches for summarising the output of MCMC algorithms for Bayesian clustering models.
A key contribution of our work is the observation that PSMs are positive semi-definite, and hence can be used to define probabilistically-motivated kernel matrices.
arXiv Detail & Related papers (2020-09-27T14:16:14Z) - Multi-View Spectral Clustering with High-Order Optimal Neighborhood
Laplacian Matrix [57.11971786407279]
Multi-view spectral clustering can effectively reveal the intrinsic cluster structure among data.
This paper proposes a multi-view spectral clustering algorithm that learns a high-order optimal neighborhood Laplacian matrix.
Our proposed algorithm generates the optimal Laplacian matrix by searching the neighborhood of the linear combination of both the first-order and high-order base.
arXiv Detail & Related papers (2020-08-31T12:28:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.