論文の概要: Simulating H.P. Lovecraft horror literature with the ChatGPT large
language model
- arxiv url: http://arxiv.org/abs/2305.03429v1
- Date: Fri, 5 May 2023 11:03:03 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-08 14:20:43.169013
- Title: Simulating H.P. Lovecraft horror literature with the ChatGPT large
language model
- Title(参考訳): ChatGPT大言語モデルによるH.P.ラブクラフトホラー文学のシミュレーション
- Authors: Eduardo C. Garrido-Merch\'an, Jos\'e Luis Arroyo-Barrig\"uete, Roberto
Gozalo-Brihuela
- Abstract要約: 本稿では,ChatGPT大言語モデル,特にGPT-4アーキテクチャを用いて,H.P. Lovecraftのホラー文学をシミュレートする新しい手法を提案する。
本研究の目的は,Lovecraftの独特な書体スタイルとテーマを模倣したテキストを生成することであり,また,モデル出力の導出において,迅速な工学的手法の有効性を検討することである。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we present a novel approach to simulating H.P. Lovecraft's
horror literature using the ChatGPT large language model, specifically the
GPT-4 architecture. Our study aims to generate text that emulates Lovecraft's
unique writing style and themes, while also examining the effectiveness of
prompt engineering techniques in guiding the model's output. To achieve this,
we curated a prompt containing several specialized literature references and
employed advanced prompt engineering methods. We conducted an empirical
evaluation of the generated text by administering a survey to a sample of
undergraduate students. Utilizing statistical hypothesis testing, we assessed
the students ability to distinguish between genuine Lovecraft works and those
generated by our model. Our findings demonstrate that the participants were
unable to reliably differentiate between the two, indicating the effectiveness
of the GPT-4 model and our prompt engineering techniques in emulating
Lovecraft's literary style. In addition to presenting the GPT model's
capabilities, this paper provides a comprehensive description of its underlying
architecture and offers a comparative analysis with related work that simulates
other notable authors and philosophers, such as Dennett. By exploring the
potential of large language models in the context of literary emulation, our
study contributes to the body of research on the applications and limitations
of these models in various creative domains.
- Abstract(参考訳): 本稿では,ChatGPT大言語モデル,特にGPT-4アーキテクチャを用いて,H.P. Lovecraftのホラー文学をシミュレートするための新しいアプローチを提案する。
本研究の目的は,lovecraftの独特な文体やテーマを模倣したテキスト生成と,モデルの出力誘導における工学的手法の有効性を検討することである。
そこで我々は,いくつかの専門文献参照を含むプロンプトをキュレートし,高度なプロンプト工学手法を適用した。
大学生のサンプルに対して調査を行い,生成したテキストについて経験的評価を行った。
統計的仮説テストを用いて,本モデルが生み出した本作品と本モデルによる本作品の識別能力を評価した。
以上の結果から,GPT-4モデルの有効性と,ラブクラフトの文芸スタイルをエミュレートする上での迅速な工学的手法の有効性が示唆された。
本論文は,GPTモデルの能力に加えて,その基盤となるアーキテクチャを包括的に記述し,デネットのような他の著名な著者や哲学者をシミュレートする関連研究との比較分析を行う。
本研究は,文学的エミュレーションの文脈における大規模言語モデルの可能性を探究することにより,様々な創造的領域におけるこれらのモデルの適用と限界に関する研究に寄与する。
関連論文リスト
- Inclusivity in Large Language Models: Personality Traits and Gender Bias in Scientific Abstracts [49.97673761305336]
我々は,3つの大きな言語モデル (LLM) を,人間の物語スタイルと潜在的な性別バイアスに適合させることで評価した。
以上の結果から,これらのモデルは一般的にヒトの投稿内容によく似たテキストを生成するが,スタイル的特徴の変化は有意な性差を示すことが示唆された。
論文 参考訳(メタデータ) (2024-06-27T19:26:11Z) - Evaluating Large Language Model Creativity from a Literary Perspective [13.672268920902187]
本稿では,大規模言語モデルが創造的記述プロセスにおいて補助ツールとして機能する可能性を評価する。
我々は,背景記述をインターリーブする対話的かつ多声的なプロンプト戦略,構成を案内する指示,対象スタイルのテキストのサンプル,与えられたサンプルの批判的議論を開発する。
論文 参考訳(メタデータ) (2023-11-30T16:46:25Z) - BatGPT: A Bidirectional Autoregessive Talker from Generative Pre-trained
Transformer [77.28871523946418]
BatGPTは武漢大学と上海江東大学が共同で設計・訓練した大規模言語モデルである。
テキストプロンプト、画像、オーディオなど、さまざまなタイプの入力に応答して、非常に自然で、流動的なテキストを生成することができる。
論文 参考訳(メタデータ) (2023-07-01T15:10:01Z) - SciMON: Scientific Inspiration Machines Optimized for Novelty [68.46036589035539]
文献に基づく新たな科学的方向を生成するために,ニューラルランゲージモデルを探索し,拡張する。
モデルが入力背景コンテキストとして使用される新しい設定で、劇的な出発をとっています。
本稿では,過去の科学的論文から「吸入」を抽出するモデリングフレームワークであるSciMONを紹介する。
論文 参考訳(メタデータ) (2023-05-23T17:12:08Z) - Large Language Models in the Workplace: A Case Study on Prompt
Engineering for Job Type Classification [58.720142291102135]
本研究では,実環境における職種分類の課題について検討する。
目標は、英語の求職が卒業生やエントリーレベルの地位に適切かどうかを判断することである。
論文 参考訳(メタデータ) (2023-03-13T14:09:53Z) - The Next Chapter: A Study of Large Language Models in Storytelling [51.338324023617034]
大規模言語モデル(LLM)を用いたプロンプトベース学習の適用は,自然言語処理(NLP)タスクにおいて顕著な性能を示した。
本稿では,LLMのストーリー生成能力と最近のモデルを比較するために,自動評価と人的評価の両方を利用した総合的な調査を行う。
その結果、LLMは他のストーリー生成モデルと比較して、非常に高い品質のストーリーを生成することがわかった。
論文 参考訳(メタデータ) (2023-01-24T02:44:02Z) - MOCHA: A Multi-Task Training Approach for Coherent Text Generation from
Cognitive Perspective [22.69509556890676]
本稿では,文章の認知理論に基づくコヒーレントテキスト生成のための新しいマルチタスク学習戦略を提案する。
我々は,物語生成,ニュース記事作成,議論生成という3つのオープンエンド世代タスクに対して,我々のモデルを広範囲に評価する。
論文 参考訳(メタデータ) (2022-10-26T11:55:41Z) - Using Large Language Models to Simulate Multiple Humans and Replicate
Human Subject Studies [7.696359453385686]
チューリング実験(TE)と呼ばれる新しいタイプの試験を導入する。
TEは、言語モデルの特定の人間の振る舞いのシミュレーションにおいて一貫した歪みを明らかにすることができる。
我々は、異なる言語モデルが、古典的な経済、精神言語、社会心理学実験をいかにうまく再現できるかを比較した。
論文 参考訳(メタデータ) (2022-08-18T17:54:49Z) - An Application of Pseudo-Log-Likelihoods to Natural Language Scoring [5.382454613390483]
比較的少ないパラメータとトレーニングステップを持つ言語モデルは、最近の大規模なデータセットでそれを上回るパフォーマンスを得ることができる。
二項選択タスクにおける常識推論のための絶対的最先端結果を生成する。
より小さなモデルの堅牢性は、構成性の観点から理解されるべきである。
論文 参考訳(メタデータ) (2022-01-23T22:00:54Z) - BERT: A Review of Applications in Natural Language Processing and
Understanding [0.0]
本稿では,最も人気のあるディープラーニングベースの言語モデルであるBERTの応用について述べる。
このレビューの準備では、科学界で最も注目を集めた過去数年間に発表された数十のオリジナルの科学論文のデータが体系化されました。
論文 参考訳(メタデータ) (2021-03-22T15:34:39Z) - Reverse Engineering Configurations of Neural Text Generation Models [86.9479386959155]
モデル選択の結果、機械が生成したテキストに現れるアーティファクトの研究は、新しい研究領域である。
我々は、モデリング選択が検出可能なアーティファクトを生成テキストに残すかどうかを確認するために、広範囲な診断テストを実行する。
我々の重要な発見は、厳密な実験によって裏付けられ、そのような成果物が存在することと、生成されたテキストのみを観察することで異なるモデリング選択を推測できることである。
論文 参考訳(メタデータ) (2020-04-13T21:02:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。