Multi-View Graph Representation Learning for Answering Hybrid Numerical
Reasoning Question
- URL: http://arxiv.org/abs/2305.03458v1
- Date: Fri, 5 May 2023 12:00:58 GMT
- Title: Multi-View Graph Representation Learning for Answering Hybrid Numerical
Reasoning Question
- Authors: Yifan Wei, Fangyu Lei, Yuanzhe Zhang, Jun Zhao, Kang Liu
- Abstract summary: The paper proposes a Multi-View Graph (MVG) to take the relations among the granularity into account and capture the relations from multiple view.
We validate our model on the publicly available table-text hybrid QA benchmark (TAT-QA) and outperform the state-of-the-art model.
- Score: 13.321467396155116
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Hybrid question answering (HybridQA) over the financial report contains both
textual and tabular data, and requires the model to select the appropriate
evidence for the numerical reasoning task. Existing methods based on
encoder-decoder framework employ a expression tree-based decoder to solve
numerical reasoning problems. However, encoders rely more on Machine Reading
Comprehension (MRC) methods, which take table serialization and text splicing
as input, damaging the granularity relationship between table and text as well
as the spatial structure information of table itself. In order to solve these
problems, the paper proposes a Multi-View Graph (MVG) Encoder to take the
relations among the granularity into account and capture the relations from
multiple view. By utilizing MVGE as a module, we constuct Tabular View,
Relation View and Numerical View which aim to retain the original
characteristics of the hybrid data. We validate our model on the publicly
available table-text hybrid QA benchmark (TAT-QA) and outperform the
state-of-the-art model.
Related papers
- Integrating Large Language Models with Graph-based Reasoning for Conversational Question Answering [58.17090503446995]
We focus on a conversational question answering task which combines the challenges of understanding questions in context and reasoning over evidence gathered from heterogeneous sources like text, knowledge graphs, tables, and infoboxes.
Our method utilizes a graph structured representation to aggregate information about a question and its context.
arXiv Detail & Related papers (2024-06-14T13:28:03Z) - Relation Rectification in Diffusion Model [64.84686527988809]
We introduce a novel task termed Relation Rectification, aiming to refine the model to accurately represent a given relationship it initially fails to generate.
We propose an innovative solution utilizing a Heterogeneous Graph Convolutional Network (HGCN)
The lightweight HGCN adjusts the text embeddings generated by the text encoder, ensuring the accurate reflection of the textual relation in the embedding space.
arXiv Detail & Related papers (2024-03-29T15:54:36Z) - A Semantic Mention Graph Augmented Model for Document-Level Event Argument Extraction [12.286432133599355]
Document-level Event Argument Extraction (DEAE) aims to identify arguments and their specific roles from an unstructured document.
advanced approaches on DEAE utilize prompt-based methods to guide pre-trained language models (PLMs) in extracting arguments from input documents.
We propose a semantic mention Graph Augmented Model (GAM) to address these two problems in this paper.
arXiv Detail & Related papers (2024-03-12T08:58:07Z) - NewsQs: Multi-Source Question Generation for the Inquiring Mind [59.79288644158271]
We present NewsQs, a dataset that provides question-answer pairs for multiple news documents.
To create NewsQs, we augment a traditional multi-document summarization dataset with questions automatically generated by a T5-Large model fine-tuned on FAQ-style news articles.
arXiv Detail & Related papers (2024-02-28T16:59:35Z) - HeLM: Highlighted Evidence augmented Language Model for Enhanced Table-to-Text Generation [7.69801337810352]
We conduct parameter-efficient fine-tuning on the LLaMA2 model.
Our approach involves injecting reasoning information into the input by emphasizing table-specific row data.
On both the FetaQA and QTSumm datasets, our approach achieved state-of-the-art results.
arXiv Detail & Related papers (2023-11-15T12:02:52Z) - Doc2SoarGraph: Discrete Reasoning over Visually-Rich Table-Text
Documents via Semantic-Oriented Hierarchical Graphs [79.0426838808629]
We propose TAT-DQA, i.e. to answer the question over a visually-rich table-text document.
Specifically, we propose a novel Doc2SoarGraph framework with enhanced discrete reasoning capability.
We conduct extensive experiments on TAT-DQA dataset, and the results show that our proposed framework outperforms the best baseline model by 17.73% and 16.91% in terms of Exact Match (EM) and F1 score respectively on the test set.
arXiv Detail & Related papers (2023-05-03T07:30:32Z) - Answering Numerical Reasoning Questions in Table-Text Hybrid Contents
with Graph-based Encoder and Tree-based Decoder [19.429216786198577]
This paper proposes a textbfRelational textbfGraph enhanced textbfHybrid table-text textbfNumerical reasoning model with textbfRegHNT.
It models the numerical question answering over table-text hybrid contents as an expression tree generation task. We validated our model on the publicly available table-text hybrid QA benchmark (TAT-QA)
arXiv Detail & Related papers (2022-09-16T03:15:12Z) - Towards Complex Document Understanding By Discrete Reasoning [77.91722463958743]
Document Visual Question Answering (VQA) aims to understand visually-rich documents to answer questions in natural language.
We introduce a new Document VQA dataset, named TAT-DQA, which consists of 3,067 document pages and 16,558 question-answer pairs.
We develop a novel model named MHST that takes into account the information in multi-modalities, including text, layout and visual image, to intelligently address different types of questions.
arXiv Detail & Related papers (2022-07-25T01:43:19Z) - BASS: Boosting Abstractive Summarization with Unified Semantic Graph [49.48925904426591]
BASS is a framework for Boosting Abstractive Summarization based on a unified Semantic graph.
A graph-based encoder-decoder model is proposed to improve both the document representation and summary generation process.
Empirical results show that the proposed architecture brings substantial improvements for both long-document and multi-document summarization tasks.
arXiv Detail & Related papers (2021-05-25T16:20:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.