論文の概要: Zoo Guide to Network Embedding
- arxiv url: http://arxiv.org/abs/2305.03474v1
- Date: Fri, 5 May 2023 12:36:18 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-08 14:00:49.813195
- Title: Zoo Guide to Network Embedding
- Title(参考訳): zoo guide to network embedded (英語)
- Authors: Anthony Baptista, Rub\'en J. S\'anchez-Garc\'ia, Ana\"is Baudot,
Ginestra Bianconi
- Abstract要約: 埋め込みスペースをネットワークに割り当てるプロセスは、ここ数十年で多くの関心を集めている。
この分野の文献や現在のトレンドを埋め込んだネットワークへのユーザフレンドリーなガイドを提供する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Networks have provided extremely successful models of data and complex
systems. Yet, as combinatorial objects, networks do not have in general
intrinsic coordinates and do not typically lie in an ambient space. The process
of assigning an embedding space to a network has attracted lots of interest in
the past few decades, and has been efficiently applied to fundamental problems
in network inference, such as link prediction, node classification, and
community detection. In this review, we provide a user-friendly guide to the
network embedding literature and current trends in this field which will allow
the reader to navigate through the complex landscape of methods and approaches
emerging from the vibrant research activity on these subjects.
- Abstract(参考訳): ネットワークはデータと複雑なシステムの非常に成功したモデルを提供してきた。
しかし、組合せ対象として、ネットワークは一般に内在座標を持たず、一般には周囲の空間に存在しない。
ネットワークに埋め込み空間を割り当てるプロセスは、過去数十年で多くの関心を集め、リンク予測、ノード分類、コミュニティ検出といったネットワーク推論の根本的な問題に効率的に適用されてきた。
本稿では,本分野における文献と現在のトレンドを組み込んだネットワークのユーザフレンドリなガイドについて紹介し,これらの課題に対する活発な研究活動から生まれる手法やアプローチの複雑な景観を読者がナビゲートできるようにする。
関連論文リスト
- Sifting out communities in large sparse networks [2.666294200266662]
大規模ネットワークにおけるクラスタリングの結果の質を定量化するための直感的な客観的関数を導入する。
この領域に特に適したコミュニティを特定するために,2段階の手法を用いる。
数万のノードからなる大規模ネットワークにおける複雑な遺伝的相互作用を同定する。
論文 参考訳(メタデータ) (2024-05-01T18:57:41Z) - Unsupervised Learning via Network-Aware Embeddings [0.0]
ノード属性間のネットワーク距離を推定することにより,ネットワーク対応の埋め込みを作成する方法を示す。
提案手法は完全オープンソースであり, 論文中のすべての結果を再現するためのデータとコードは利用可能である。
論文 参考訳(メタデータ) (2023-09-19T08:17:48Z) - Machine Learning-Based User Scheduling in Integrated
Satellite-HAPS-Ground Networks [82.58968700765783]
第6世代通信ネットワーク(6G)の強化のための価値あるソリューション空間の提供を約束する。
本稿では,空対地統合通信におけるユーザスケジューリングにおける機械学習の可能性について述べる。
論文 参考訳(メタデータ) (2022-05-27T13:09:29Z) - Network representation learning systematic review: ancestors and current
development state [1.0312968200748116]
本稿では,ネットワーク埋め込みとして知られるネットワーク表現学習を誕生から現在までの体系的に調査する。
また,ネットワーク表現学習の理解に必要な基本概念の形式的定義も提供する。
最も一般的に使用される下流タスクは、埋め込みの評価、評価メトリクス、一般的なデータセットである。
論文 参考訳(メタデータ) (2021-09-14T14:44:44Z) - A Comprehensive Survey on Community Detection with Deep Learning [93.40332347374712]
コミュニティは、ネットワーク内の他のコミュニティと異なるメンバーの特徴と接続を明らかにする。
この調査は、最先端の手法の様々なカテゴリをカバーする新しい分類法を考案し、提案する。
ディープニューラルネットワーク(Deep Neural Network)は、畳み込みネットワーク(convolutional network)、グラフアテンションネットワーク( graph attention network)、生成的敵ネットワーク(generative adversarial network)、オートエンコーダ(autoencoder)に分けられる。
論文 参考訳(メタデータ) (2021-05-26T14:37:07Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
本論文では,アトリビュートネットワーク上の異常検出のためのコントラスト型自己監視学習フレームワークを提案する。
このフレームワークは、新しいタイプのコントラストインスタンスペアをサンプリングすることで、ネットワークデータからのローカル情報を完全に活用します。
高次元特性と局所構造から情報埋め込みを学習するグラフニューラルネットワークに基づくコントラスト学習モデルを提案する。
論文 参考訳(メタデータ) (2021-02-27T03:17:20Z) - A Survey of Community Detection Approaches: From Statistical Modeling to
Deep Learning [95.27249880156256]
ネットワークコミュニティファイリング手法の統一アーキテクチャを開発し,提案する。
既存の手法を確率的グラフィカルモデルとディープラーニングという2つのカテゴリに分けた新しい分類法を提案する。
フィールドの課題の議論と今後の研究の方向性の提案を締めくくります。
論文 参考訳(メタデータ) (2021-01-03T02:32:45Z) - NetReAct: Interactive Learning for Network Summarization [60.18513812680714]
本論文では,テキストコーポラによる感覚生成のネットワーク可視化を支援する,新しいインタラクティブネットワーク要約アルゴリズムであるNetReActを提案する。
netreactが、他の非自明なベースラインよりも、隠れたパターンを明らかにする高品質な要約や視覚化の生成に成功していることを示す。
論文 参考訳(メタデータ) (2020-12-22T03:56:26Z) - Learning Connectivity of Neural Networks from a Topological Perspective [80.35103711638548]
本稿では,ネットワークを解析のための完全なグラフに表現するためのトポロジ的視点を提案する。
接続の規模を反映したエッジに学習可能なパラメータを割り当てることにより、学習プロセスを異なる方法で行うことができる。
この学習プロセスは既存のネットワークと互換性があり、より大きな検索空間と異なるタスクへの適応性を持っている。
論文 参考訳(メタデータ) (2020-08-19T04:53:31Z) - Temporal Network Representation Learning via Historical Neighborhoods
Aggregation [28.397309507168128]
本稿では,EHNAアルゴリズムによる埋め込みを提案する。
まず,歴史地区のノードを特定できる時間的ランダムウォークを提案する。
次に,ノード埋め込みを誘導するカスタムアテンション機構を用いたディープラーニングモデルを適用する。
論文 参考訳(メタデータ) (2020-03-30T04:18:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。