論文の概要: Sifting out communities in large sparse networks
- arxiv url: http://arxiv.org/abs/2405.00816v1
- Date: Wed, 1 May 2024 18:57:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-03 20:32:52.693058
- Title: Sifting out communities in large sparse networks
- Title(参考訳): 大規模スパースネットワークにおけるコミュニティ構築
- Authors: Sharlee Climer, Kenneth Smith Jr, Wei Yang, Lisa de las Fuentes, Victor G. Dávila-Román, C. Charles Gu,
- Abstract要約: 大規模ネットワークにおけるクラスタリングの結果の質を定量化するための直感的な客観的関数を導入する。
この領域に特に適したコミュニティを特定するために,2段階の手法を用いる。
数万のノードからなる大規模ネットワークにおける複雑な遺伝的相互作用を同定する。
- 参考スコア(独自算出の注目度): 2.666294200266662
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Research data sets are growing to unprecedented sizes and network modeling is commonly used to extract complex relationships in diverse domains, such as genetic interactions involved in disease, logistics, and social communities. As the number of nodes increases in a network, an increasing sparsity of edges is a practical limitation due to memory restrictions. Moreover, many of these sparse networks exhibit very large numbers of nodes with no adjacent edges, as well as disjoint components of nodes with no edges connecting them. A prevalent aim in network modeling is the identification of clusters, or communities, of nodes that are highly interrelated. Several definitions of strong community structure have been introduced to facilitate this task, each with inherent assumptions and biases. We introduce an intuitive objective function for quantifying the quality of clustering results in large sparse networks. We utilize a two-step method for identifying communities which is especially well-suited for this domain as the first step efficiently divides the network into the disjoint components, while the second step optimizes clustering of the produced components based on the new objective. Using simulated networks, optimization based on the new objective function consistently yields significantly higher accuracy than those based on the modularity function, with the widest gaps appearing for the noisiest networks. Additionally, applications to benchmark problems illustrate the intuitive correctness of our approach. Finally, the practicality of our approach is demonstrated in real-world data in which we identify complex genetic interactions in large-scale networks comprised of tens of thousands of nodes. Based on these three different types of trials, our results clearly demonstrate the usefulness of our two-step procedure and the accuracy of our simple objective.
- Abstract(参考訳): 研究データセットは前例のない規模に成長しており、ネットワークモデリングは、病気、物流、社会社会に関わる遺伝的相互作用など、様々な領域における複雑な関係を抽出するために一般的に用いられている。
ネットワーク内のノード数が増加するにつれて、エッジの間隔の増大はメモリ制限による現実的な制限となる。
さらに、これらのスパースネットワークの多くは、隣接するエッジを持たないノードや、エッジを接続しないノードの解離したコンポーネントを非常に多く示している。
ネットワークモデリングにおける主な目的は、非常に相互関係の深いノードのクラスタ、またはコミュニティの識別である。
この課題を促進するために、いくつかの強いコミュニティ構造の定義が導入されており、それぞれに固有の仮定とバイアスがある。
大規模ネットワークにおけるクラスタリングの結果の質を定量化するための直感的な客観的関数を導入する。
本稿では,この領域に特に適したコミュニティを,ネットワークを解離コンポーネントに効率的に分割する第1ステップとして,第2ステップでは新たな目的に基づいて生成コンポーネントのクラスタリングを最適化する第2ステップとして,2段階の手法を用いる。
シミュレーションネットワークを用いることで、新しい目的関数に基づく最適化は、最もノイズの多いネットワークに最も広いギャップが現れるため、モジュラリティ関数に基づく最適化よりもはるかに高い精度が得られる。
さらに、ベンチマーク問題へのアプリケーションは、我々のアプローチの直感的な正しさを示している。
最後に,数万のノードからなる大規模ネットワークにおける複雑な遺伝的相互作用を同定する実世界のデータを用いて,本手法の実用性を実証した。
これら3つの異なる試行に基づいて,本研究の結果は2段階の手順の有用性と簡便な目的の正確さを明らかにした。
関連論文リスト
- Unsupervised Graph Attention Autoencoder for Attributed Networks using
K-means Loss [0.0]
我々は、属性付きネットワークにおけるコミュニティ検出のための、教師なしのtextbfGraph Attention textbfAutotextbfEncoder に基づく、シンプルで効率的なクラスタリング指向モデルを提案する。
提案モデルは,ネットワークのトポロジと属性情報の両方から表現を十分に学習し,同時に2つの目的,すなわち再構築とコミュニティ発見に対処する。
論文 参考訳(メタデータ) (2023-11-21T20:45:55Z) - A Unified Framework for Exploratory Learning-Aided Community Detection
Under Topological Uncertainty [16.280950663982107]
META-CODEは、ソーシャルネットワークにおける重複コミュニティを検出する統合フレームワークである。
1)新たな再構築損失によってトレーニングされたグラフニューラルネットワーク(GNN)に基づくノードレベルのコミュニティアフィリエイト埋め込み,2)コミュニティアフィリエイトベースのノードクエリによるネットワーク探索,3)エッジ接続に基づくSiameseニューラルネットワークモデルを用いたネットワーク推論,の3つのステップで構成されている。
論文 参考訳(メタデータ) (2023-04-10T10:22:21Z) - Implicit models, latent compression, intrinsic biases, and cheap lunches
in community detection [0.0]
コミュニティ検出は、ネットワークをノードのクラスタに分割して、その大規模な構造を要約することを目的としている。
いくつかのコミュニティ検出手法は、確率的生成モデルを通じてクラスタリングの目的を明示的に導出する。
他の方法は記述的であり、特定のアプリケーションによって動機付けられた目的に応じてネットワークを分割する。
本稿では,コミュニティ検出対象,推論対象,記述対象とそれに対応する暗黙的ネットワーク生成モデルとを関連付けるソリューションを提案する。
論文 参考訳(メタデータ) (2022-10-17T15:38:41Z) - Bayesian community detection for networks with covariates [16.230648949593153]
科学界でもっとも注目されているのは「コミュニティ検出」である。
共依存型ランダムパーティションを持つブロックモデルを提案する。
本モデルでは, 後部推測により, コミュニティの数を知ることができる。
論文 参考訳(メタデータ) (2022-03-04T01:58:35Z) - Community detection using low-dimensional network embedding algorithms [1.052782170493037]
我々はDeepWalkとnode2vecという2つの主要なアルゴリズムが、標準ネットワークモデルのためのコミュニティを回復する際の性能を厳格に理解している。
固定された共起窓を考えると、非追跡確率の低いランダムウォークを用いた node2vec は、多くのスペーサーネットワークで成功することを示す。
論文 参考訳(メタデータ) (2021-11-04T14:57:43Z) - Unsupervised Domain-adaptive Hash for Networks [81.49184987430333]
ドメイン適応型ハッシュ学習はコンピュータビジョンコミュニティでかなりの成功を収めた。
UDAHと呼ばれるネットワークのための教師なしドメイン適応型ハッシュ学習手法を開発した。
論文 参考訳(メタデータ) (2021-08-20T12:09:38Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
本論文では,アトリビュートネットワーク上の異常検出のためのコントラスト型自己監視学習フレームワークを提案する。
このフレームワークは、新しいタイプのコントラストインスタンスペアをサンプリングすることで、ネットワークデータからのローカル情報を完全に活用します。
高次元特性と局所構造から情報埋め込みを学習するグラフニューラルネットワークに基づくコントラスト学習モデルを提案する。
論文 参考訳(メタデータ) (2021-02-27T03:17:20Z) - On the use of local structural properties for improving the efficiency
of hierarchical community detection methods [77.34726150561087]
本研究では,階層型コミュニティ検出の効率向上のために,局所構造ネットワーク特性をプロキシとして利用する方法について検討する。
また,ネットワークプルーニングの性能への影響を,階層的コミュニティ検出をより効率的にするための補助的手法として検証する。
論文 参考訳(メタデータ) (2020-09-15T00:16:12Z) - Learning Connectivity of Neural Networks from a Topological Perspective [80.35103711638548]
本稿では,ネットワークを解析のための完全なグラフに表現するためのトポロジ的視点を提案する。
接続の規模を反映したエッジに学習可能なパラメータを割り当てることにより、学習プロセスを異なる方法で行うことができる。
この学習プロセスは既存のネットワークと互換性があり、より大きな検索空間と異なるタスクへの適応性を持っている。
論文 参考訳(メタデータ) (2020-08-19T04:53:31Z) - A Multi-Semantic Metapath Model for Large Scale Heterogeneous Network
Representation Learning [52.83948119677194]
大規模不均一表現学習のためのマルチセマンティックメタパス(MSM)モデルを提案する。
具体的には,マルチセマンティックなメタパスに基づくランダムウォークを生成し,不均衡な分布を扱うヘテロジニアスな近傍を構築する。
提案するフレームワークに対して,AmazonとAlibabaの2つの挑戦的なデータセットに対して,体系的な評価を行う。
論文 参考訳(メタデータ) (2020-07-19T22:50:20Z) - Detecting Communities in Heterogeneous Multi-Relational Networks:A
Message Passing based Approach [89.19237792558687]
コミュニティは、ソーシャルネットワーク、生物学的ネットワーク、コンピュータおよび情報ネットワークを含むネットワークの共通の特徴である。
我々は,全同種ネットワークのコミュニティを同時に検出する効率的なメッセージパッシングに基づくアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-04-06T17:36:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。