論文の概要: Open problems in causal structure learning: A case study of COVID-19 in
the UK
- arxiv url: http://arxiv.org/abs/2305.03859v2
- Date: Wed, 6 Sep 2023 15:42:40 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-07 19:08:28.479631
- Title: Open problems in causal structure learning: A case study of COVID-19 in
the UK
- Title(参考訳): 因果構造学習におけるオープン問題:英国におけるCOVID-19の事例研究
- Authors: Anthony Constantinou, Neville K. Kitson, Yang Liu, Kiattikun Chobtham,
Arian Hashemzadeh, Praharsh A. Nanavati, Rendani Mbuvha, and Bruno Petrungaro
- Abstract要約: 因果機械学習(ML)アルゴリズムは、原因と効果の関係について何かを教えてくれるグラフィカルな構造を復元する。
本稿では、COVID-19 UKパンデミックデータに適用した因果MLの課題について検討する。
- 参考スコア(独自算出の注目度): 4.159754744541361
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Causal machine learning (ML) algorithms recover graphical structures that
tell us something about cause-and-effect relationships. The causal
representation praovided by these algorithms enables transparency and
explainability, which is necessary for decision making in critical real-world
problems. Yet, causal ML has had limited impact in practice compared to
associational ML. This paper investigates the challenges of causal ML with
application to COVID-19 UK pandemic data. We collate data from various public
sources and investigate what the various structure learning algorithms learn
from these data. We explore the impact of different data formats on algorithms
spanning different classes of learning, and assess the results produced by each
algorithm, and groups of algorithms, in terms of graphical structure, model
dimensionality, sensitivity analysis, confounding variables, predictive and
interventional inference. We use these results to highlight open problems in
causal structure learning and directions for future research. To facilitate
future work, we make all graphs, models, data sets, and source code publicly
available online.
- Abstract(参考訳): 因果機械学習(ML)アルゴリズムは、原因と効果の関係について何かを教えてくれるグラフィカルな構造を復元する。
これらのアルゴリズムによって実証された因果表現は、重要な現実世界の問題における意思決定に必要な透明性と説明可能性を実現する。
しかし, 因果MLは, 関連MLと比較して, 実践に限られた影響を与えている。
本稿では、COVID-19 UKパンデミックデータに適用した因果MLの課題について検討する。
各種公開情報源からのデータを照合し,これらのデータからどのような構造学習アルゴリズムが学習するかを検討する。
本研究では,学習の異なるクラスにまたがるアルゴリズムに対する異なるデータ形式の影響を調査し,各アルゴリズム,およびアルゴリズム群が生成する結果について,グラフィカル構造,モデル次元,感度解析,変数の結合,予測および介入推論の観点から評価する。
これらの結果を用いて, 因果構造学習におけるオープン問題を強調し, 今後の研究の方向性を示す。
将来の作業を容易にするために、すべてのグラフ、モデル、データセット、ソースコードをオンラインで公開しています。
関連論文リスト
- Learning to refine domain knowledge for biological network inference [2.209921757303168]
摂動実験により、生物学者は興味のある変数間の因果関係を発見することができる。
これらのデータの空間性と高次元性は因果構造学習アルゴリズムに重大な課題をもたらす。
そこで本研究では,データ観測に基づくドメイン知識の補修アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-10-18T12:53:23Z) - Graph-level Protein Representation Learning by Structure Knowledge
Refinement [50.775264276189695]
本稿では、教師なしの方法でグラフ全体の表現を学習することに焦点を当てる。
本稿では、データ構造を用いて、ペアが正か負かの確率を決定する構造知識精製(Structure Knowledge Refinement, SKR)という新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2024-01-05T09:05:33Z) - Causal disentanglement of multimodal data [1.589226862328831]
因果関係を持つ重要な特徴を発見するために,マルチモーダルデータと既知の物理を利用する因果表現学習アルゴリズム(causalPIMA)を導入する。
本研究は,完全教師なし環境下で重要な特徴を同時に発見しながら,解釈可能な因果構造を学習する能力を示すものである。
論文 参考訳(メタデータ) (2023-10-27T20:30:11Z) - Learning Strong Graph Neural Networks with Weak Information [64.64996100343602]
我々は、弱い情報(GLWI)を用いたグラフ学習問題に対する原則的アプローチを開発する。
非完全構造を持つ入力グラフ上で長距離情報伝搬を行うデュアルチャネルGNNフレームワークであるD$2$PTを提案するが、グローバルな意味的類似性を符号化するグローバルグラフも提案する。
論文 参考訳(メタデータ) (2023-05-29T04:51:09Z) - Learning to Bound Counterfactual Inference in Structural Causal Models
from Observational and Randomised Data [64.96984404868411]
我々は、従来のEMベースのアルゴリズムを拡張するための全体的なデータの特徴付けを導出する。
新しいアルゴリズムは、そのような混合データソースからモデルパラメータの(不特定性)領域を近似することを学ぶ。
反実的な結果に間隔近似を与え、それが特定可能な場合の点に崩壊する。
論文 参考訳(メタデータ) (2022-12-06T12:42:11Z) - Amortized Inference for Causal Structure Learning [72.84105256353801]
因果構造を学習することは、通常、スコアまたは独立テストを使用して構造を評価することを伴う探索問題を引き起こす。
本研究では,観測・干渉データから因果構造を予測するため,変分推論モデルを訓練する。
我々のモデルは、実質的な分布シフトの下で頑健な一般化能力を示す。
論文 参考訳(メタデータ) (2022-05-25T17:37:08Z) - An Empirical Investigation of Commonsense Self-Supervision with
Knowledge Graphs [67.23285413610243]
大規模知識グラフから抽出した情報に基づく自己監督は、言語モデルの一般化を改善することが示されている。
本研究では,言語モデルに適用可能な合成データを生成するための知識サンプリング戦略とサイズの影響について検討する。
論文 参考訳(メタデータ) (2022-05-21T19:49:04Z) - Learning Neural Causal Models with Active Interventions [83.44636110899742]
本稿では,データ生成プロセスの根底にある因果構造を素早く識別する能動的介入ターゲット機構を提案する。
本手法は,ランダムな介入ターゲティングと比較して,要求される対話回数を大幅に削減する。
シミュレーションデータから実世界のデータまで,複数のベンチマークにおいて優れた性能を示す。
論文 参考訳(メタデータ) (2021-09-06T13:10:37Z) - Causal Learner: A Toolbox for Causal Structure and Markov Blanket
Learning [16.41685271795219]
Causal Learnerは、データから因果構造とマルコフ毛布(MB)を学ぶためのツールボックスです。
シミュレーションされたネットワークデータを生成する機能、最先端のグローバル因果構造学習アルゴリズムのセット、最先端のローカル因果構造学習アルゴリズムのセット、アルゴリズムを評価する機能を統合する。
論文 参考訳(メタデータ) (2021-03-11T09:10:55Z) - Accelerating Recursive Partition-Based Causal Structure Learning [4.357523892518871]
帰納的因果探索アルゴリズムは、より小さなサブプロブレムで条件独立性テスト(CI)を用いて良い結果をもたらす。
本稿では,少数のCIテストと望ましくない関係を特定できる汎用因果構造改善戦略を提案する。
次に,合成および実データ集合における解の質と完了時間の観点から,最先端アルゴリズムに対する性能を実証的に評価する。
論文 参考訳(メタデータ) (2021-02-23T08:28:55Z) - Information fusion between knowledge and data in Bayesian network
structure learning [5.994412766684843]
本稿では,オープンソースのベイジィス構造学習システムで実装された情報融合手法について述べる。
結果は、限定データとビッグデータの両方で示され、ベイジスで利用可能なBN構造学習アルゴリズムが3つ適用されている。
論文 参考訳(メタデータ) (2021-01-31T15:45:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。